摘要
分析了与Fibonacci序列有关的一类无穷乘积,得到了+∞∏n=0(1+F_(4k)/F_(2n+4k))=α^(4k2)k∏s=1L_(2(s-1))F_(2s-1)/F_(2k+2(s-1))L_(2k+2s-1),+∞∏n=0(1-F_(4k)/F_(2n+4k))=α^(4k2)k∏s=1 F_(2s)L_(2s-1)/L_(2(k+s))F_(2k+2s-1),接着讨论了几类更为复杂的无穷乘积,并给出了相应的结论.
In this paper,the infinite product of Fibonacci sequence is analysised and get the results as following+∞∏n=0(1+F_(4k)/F_(2n+4k))=α^(4k2)k∏s=1L_(2(s-1))F_(2s-1)/F_(2k+2(s-1))L_(2k+2s-1),+∞∏n=0(1-F_(4k)/F_(2n+4k))=α^(4k2)k∏s=1 F_(2s)L_(2s-1)/L_(2(k+s))F_(2k+2s-1),Then we give some equalites about Fibonacci sequences and Lucas sequences.
作者
张利利
郭淑妹
蒋红敬
宋鹏程
ZHANG Li-li;GUO Shu-mei;JIANG Hong-jing;SONG Peng-cheng(Huanghe Science and Technology College,Zhengzhou 450063,China;Strategy PLA Information Engineering University,Zhengzhou 450001,China;Sichuan University,Chengdu 610000,China)
出处
《数学的实践与认识》
2021年第19期298-304,共7页
Mathematics in Practice and Theory
基金
河南省科技厅科技攻关项目(182102311100)。