摘要
随着社会经济的发展,不同区域的资源禀赋与发展意愿之间存在不同程度的匹配不均匀问题,需要通过一种或多种可行的方法量化土地利用主体的决策行为。借助模型模拟、景观格局和生态功能评价优化空间格局。以五大连池风景区为研究区,根据五大连池2000年和2018年土地利用数据,选择NDVI指数、高程、坡度、土壤有机碳、水体距道理距离和人口密度等作为驱动因子,耦合Markov模型、人工神经网络(ANN)、元胞自动机模型(CA)、最小累积阻力模型(MCR)和生态足迹算法,进行土地利用空间模拟优化。预计2030年,借助空气负离子供给功能核算,基于生态足迹算法的生态保护情景下的生态康养功能比基于Markov模型的自然状态情景提升1.87%。设置限制区域后分散与并列指数降低,景观分割指数降低,斑块聚集度增强,景观连通度增强。五大连池未来发展规划的重点在于权衡耕地、林地和草地之间面积的占比,兼顾景区旅游发展需求和生态功能保护。
With the development of economy,there are different degrees of unbalanced matches between resource endowments and development intentions in different regions.It is necessary to quantify the decision-making behavior of land-use subjects through one or more feasible methods.The spatial pattern can be optimized using model simulation,landscape pattern,and ecological function evaluation.Taking Wudalianchi Scenic Area as the research area,based on the land use data of Wudalianchi in 2000 and 2018,we selected NDVI,elevation,slope,soil organic carbon,distance to road,and population density as driving factors,coupled with Markov model,artificial neural network(ANN),cellular automata model(CA),minimum cumulative resistance model(MCR)and ecological footprint algorithm to simulate land use change.It was estimated that ecological healthcare function under the ecological protection scenario based on the ecological footprint algorithm would increase by 1.87%compared to the natural state in 2030,with the help of air negative ion supply function accounting.Counting through the landscape pattern index showed that the scattered and juxtaposed index and landscape segmentation index would decrease and the patch aggregation degree and landscape connectivity would increase after setting restricted areas.The focus of Wudalianchi’s future development plan is to weigh the proportion of cultivated land,woodland,and grassland,and to take into account the tourism development of the scenic spot and the protection of ecological functions.
作者
王慧
王兵
牛香
宋庆丰
李明文
梁立冬
杜鹏飞
骆媛媛
彭巍
WANG Hui;WANG Bing;NIU Xiang;SONG Qing-feng;LI Ming-wen;LIANG Li-dong;DU Peng-fei;LUO Yuan-yuan;PENG Wei(search Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry,Beijing 100091,China;Key Laboratory of Forest Ecology and Erwirorunent of National Forestry and Grassland Administration,Beijing 100091,China;Dagangshan National Key Field Observation and Research Station far Forest Ecosystem,Fenyi 336600,Jiangxi,China;Heihe Academy of Forestry Sciences,Heihe 164300,Heilongjiang,China;Heihe Forest Ecosystem National Orientation Observation and Research Station of Heilongjiang Province,Heihe 164300,Heilongjiang,China)
出处
《生态学杂志》
CAS
CSCD
北大核心
2021年第10期3391-3400,共10页
Chinese Journal of Ecology
基金
国家重点研发计划项目(2017YFC0503804)
中国森林核算及纳入绿色经济评价研究(2019131046)
中央级公益性科研院所基本科研业务费(CAFYBB2020ZD002)资助。
关键词
资源禀赋
发展需求
元胞自动机
人工神经网络
最小累积阻力模型
五大连池风景区
resource endowment
development need
cellular automata
artificial neural network
minimum cumulative resistance model
Wudalianchi Scenic Area