期刊文献+

密集追踪数据分析:模型及其应用 被引量:13

Intensive longitudinal data analysis:Models and application
下载PDF
导出
摘要 在心理学、教育学和临床医学等领域,越来越多的研究者开始关注个体内部的行为、心理、临床效果等随时间而产生的动态变化,重视针对个体的差异化建模。密集追踪是一种在短时间内对个体进行多个时间节点密集追踪测量的方法,更适合用于研究个体内部心理过程等的动态变化及其作用机制。近年来,密集追踪成为心理学研究的一大热点,但许多密集追踪的研究分析仍停留在较为传统的方法。方法学领域已涌现出较多用于密集追踪数据分析的模型方法,较为主流的模型包括以动态结构方程模型(Dynamic Structural Equation Model,DSEM)为代表的自上而下的建模方法,以及以组迭代多模型估计(Group Iterative Multiple Model Estimation,GIMME)为代表的自下而上的建模方法。二者均可以方便地对密集追踪数据中的自回归及交叉滞后效应进行建模。 In the fields of psychology,education,and clinical science,researchers have devoted increased attention to the dynamic changes and personalized modeling of individuals'behaviors,minds,and treatment effects over time.Intensive longitudinal data is a set of measures collected at multiple time points with higher frequency over shorter periods.Thus,it can be used in the analysis of the dynamics and mechanisms of within-person processes.In recent years,intensive longitudinal design has become one of the most prominent and promising approaches in psychological research.However,many of these researches still rely on traditional data analysis methods.Many models have been proposed to analyze intensive longitudinal data,including top-down approaches(e.g.,dynamic structural equation model,DSEM)and bottom-up approaches(e.g.,group iterative multiple model estimation,GIMME).Both of the methods can conveniently model autoregressive and cross-lagged effects in intensive longitudinal data.
作者 郑舒方 张沥今 乔欣宇 潘俊豪 ZHENG Shufang;ZHANG Lijin;QIAO Xinyu;PAN Junhao(Department of Psychology,Sun Yat-sen University,Guangzhou 510006,China)
出处 《心理科学进展》 CSSCI CSCD 北大核心 2021年第11期1948-1969,I0002-I0004,共25页 Advances in Psychological Science
基金 国家自然科学基金项目(31871128) 教育部人文社会科学研究规划基金项目(18YJA190013)。
关键词 密集追踪 时间序列 动态结构方程模型 组迭代多模型估计 intensive longitudinal data time-series DSEM GIMME
  • 相关文献

参考文献9

二级参考文献62

  • 1沈伊默,袁登华.心理契约破坏研究现状与展望[J].心理科学进展,2006,14(6):912-917. 被引量:36
  • 2严明义.函数性数据的统计分析:思想、方法和应用[J].统计研究,2007,24(2):87-94. 被引量:56
  • 3王丽娜.(2007).四县农村居民主观幸福感及其与健康的关系研究.硕士学位论文.山东大学.
  • 4Blanchflower & Oswald. (2000). Well being overtime in Britain and the USA, Paper presented on a NBER Conference, London, UK.
  • 5Deneve & Cooper. (1998). The happy personality: A meta analysis of 137 personality traits and subjective well - being. Psychological Bulletin. 124:197-229.
  • 6Diener, Emmons, Larsen, & Griffin. (1985). The satisfaction with life scale. Journal of personality assessment. 49 (1): 71 - 75.
  • 7Diener, Suh, Lucas, & Smith. (1999). Subject Well Being: Three Decades of Progress. Psyckological Bullezin. 125 (2) : 276 - 302.
  • 8Kahneman, Krueger, Schkade, Schwarz, & Stone. (2004). A survey method for characterizing daily life experience: The Day Reconstruction Method (DRM). Science. 306: 1776- 1780.
  • 9Robinson, M. D. & Clore, G. L. (2002) Beliefs, situations, and their interactions: Towards a model of emotion reporting. Psychological Bulletin. 128:934-960.
  • 10Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology. 76 : 820-838.

共引文献117

同被引文献323

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部