期刊文献+

类脑脉冲神经网络及其神经形态芯片研究综述 被引量:6

A review of brain-like spiking neural network and its neuromorphic chip research
原文传递
导出
摘要 在类脑人工智能高速发展、电磁环境日益复杂的现状下,最具有仿生特性和抗干扰性的脉冲神经网络在计算速度、实时信息处理、时空数据处理上表现出巨大的潜能。脉冲神经网络是类脑人工智能的核心之一,通过模拟生物体神经网络结构和信息传递方式来实现类脑计算。本文首先总结五种神经元模型的优缺点和适用性,分析五种网络拓扑结构的特征;其次综述脉冲神经网络算法,从无监督学习和有监督学习两个角度总结基于突触可塑性规则的无监督学习算法和四类监督学习算法;最后重点综述国内外在研的类脑神经形态芯片。本文旨在通过系统性的总结,为初入脉冲神经网络研究领域的同行提供学习思路和研究方向。 Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity(STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.
作者 张慧港 徐桂芝 郭嘉荣(综述) 郭磊(审校) ZHANG Huigang;XU Guizhi;GUO Jiarong;GUO Lei(State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,P.R.China;Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health,Hebei University of Technology,Tianjin 300130,P.R.China;Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering,Hebei University of Technology,Tianjin 300130,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2021年第5期986-994,1002,共10页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(51977060,51737003)。
关键词 脉冲神经网络 脉冲神经元模型 学习算法 类脑神经形态芯片 数字电路 spiking neural network spiking neuron model algorithm neuromorphic chip digital circuit
  • 相关文献

参考文献5

二级参考文献20

  • 1Furber S B, Galluppi F, Temple S, et al. The spinnaker project. Proc IEEE, 2014, 102: 652-665.
  • 2Beyeler M, Carlson K D, Chou T S, et al. CARLsim 3: a user-friendly and highly optimized library for the creation of neurobiologically detailed spiking neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Killarney, 2015. 1-8.
  • 3Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable commu- nication network and interface. Science, 2014, 345: 668-673.
  • 4Qiao N, Mostafa H, Corradi F, et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front Neurosci, 2015, 9: 141.
  • 5Dayan P, Abbott L F. Theoretical Neuroscience. Cambridge: MIT Press, 2001. 11-52.
  • 6Neil D, Liu S C. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans Very Large Scale Integr Syst, 2014, 22: 2621-2628.
  • 7蔺想红,张田文.分段线性脉冲神经元模型的动力学特性分析[J].电子学报,2009,37(6):1270-1276. 被引量:5
  • 8韩红桂,甄博然,乔俊飞.动态结构优化神经网络及其在溶解氧控制中的应用[J].信息与控制,2010,39(3):354-360. 被引量:13
  • 9余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:616
  • 10蔺想红,王向文,张宁,马慧芳.脉冲神经网络的监督学习算法研究综述[J].电子学报,2015,43(3):577-586. 被引量:28

共引文献265

同被引文献62

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部