期刊文献+

Interannual variability and climatic sensitivity of global wildfire activity

原文传递
导出
摘要 Understanding historical wildfire variations and their environmental driving mechanisms is key to predicting and mitigating wildfires. However, current knowledge of climatic responses and regional contributions to the interannual variability (IAV) of global burned area remains limited. Using recent satellite-derived wildfire products and simulations from version v1.0 of the land component of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM land model [ELM] v1) driven by three different climate forcings, we investigated the burned area IAV and its climatic sensitivity globally and across nine biomes from 1997 to 2018. We found that 1) the ELM simulations generally agreed with the satellite observations in terms of the burned area IAV magnitudes, regional contributions, and covariations with climate factors, confirming the robustness of the ELM to the usage of different climate forcing sources;2) tropical savannas, tropical forests, and semi-arid grasslands near deserts were primary contributors to the global burned area IAV, collectively accounting for 71.7%–99.7% of the global wildfire IAV estimated by both the satellite observations and ELM simulations;3) precipitation was a major fire suppressing factor and dominated the global and regional burned area IAVs, and temperature and shortwave solar radiation were mostly positively related with burned area IAVs;and 4) noticeable local discrepancies between the ELM and remote-sensing results occurred in semi-arid grasslands, croplands, boreal forests, and wetlands, likely caused by uncertainties in the current ELM fire scheme and the imperfectly derived satellite observations. Our findings revealed the spatiotemporal diversity of wildfire variations, regional contributions and climatic responses, and provided new metrics for wildfire modeling, facilitating the wildfire prediction and management.
出处 《Advances in Climate Change Research》 SCIE CSCD 2021年第5期686-695,共10页 气候变化研究进展(英文版)
基金 This work is supported by the Terrestrial Ecosystem Science Scientific Focus Area project and the Reducing Uncertainties in Biogeochemical Interactions through Synthesis and Computing Scientific Focus Area project funded by the U.S.Department of Energy,Office of Science,Office of Biological and Environmental Research The authors also acknowledge Dr.Daniel Ricciuto for his contribution to the global ELM simulations.Oak Ridge National Laboratory is supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC05-00OR22725.
  • 相关文献

参考文献1

二级参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部