期刊文献+

基于多层石墨膜的柔性热铰链换热性能研究

Research on Heat Transfer Performance of Flexible Thermal Hinge based on Multi-layer Graphite
原文传递
导出
摘要 柔性热铰链以其优越的空间自适应和导热性能,在某些场景中具备取代传统均温板的巨大潜力。采用Peaceman-Rachford ADI迭代方法对温度场求解的结果与试验数据基本一致。在热流密度0.2 MW/m^(2)、传输距离150 mm的条件下,柔性热铰链的传热温差可控制在32 K以内。通过分析其温差的变化趋势,证明了长度尺寸和覆胶方案对各区域扩散特性的影响彼此独立;与增大宽度尺寸的方法相比,增加层叠数量对降低其热阻的效果更佳。最后提出层叠效率的概念,用于表征层叠数量增加对其换热效率的影响,为后续柔性热铰链的设计选型提供参考。 Flexible thermal hinges have great potential to replace traditional vapor-chamber in some scenarios due to their superior space adaptation and thermal conductivity.The results of the temperature field through the Peaceman-Rachford ADI iterative method are basically consistent with the experimental data.Under the conditions of the heat flux density(0.2 MW/m_(2))and the distance(150 mm),the temperature difference of the flexible thermal hinge can be controlled within32 K.By analyzing the trend of the temperature difference,it is proved that the effects of the length dimension and the coating scheme on the thermal diffusion characteristics of each region are independent.Increasing the number of layers has a better effect on reducing its thermal resistance.Finally,the concept of stacking efficiency is proposed to characterize the effect on its heat transfer efficiency by increasing the number of stacking,and also provides a reference for the design and selection of flexible thermal hinges.
作者 周嘉 胡力文 闫森森 于潼 ZHOU Jia;HU Li-Wen;YAN Sen-Sen;YU Tong(Enterprise Key Lab of Resistant Special Computer,Tianjin Navigation Instruments Research Institute,Tianjin 300131,China;National Industrial Design Center,SUNGROW,Anhui 230088,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2021年第10期2633-2641,共9页 Journal of Engineering Thermophysics
基金 企业青年创新基金资助项目(No.QN-19-01-SY)。
关键词 多层石墨膜 柔性热铰链 温差 传热性能 效率 multi-layer graphite flexible thermal hinge temperature difference heat transfer performance efficiency
  • 相关文献

参考文献6

二级参考文献33

  • 1监凯维奇0c.有限元法[M].北京:科学出版社,1985..
  • 2MARTIN H. Heat and mass transfer between impinging gas jets and solid surface[J]. Advances in Heat Transfer, 1977, 13. 1-60.
  • 3JAMBUNATHAN K, MOSS M A, BUTTON B L. A review of heat transfer data for single circular jet impingement[J]. Int. J. Heat and Fluid Flow, 1992, 13(2): 106-115.
  • 4EIBECK P A, KELLER J O, BRAMLETTE T T, et al. Pulse combustion : Impinging jet heat Transfer enhancement[J]. Combust. Sci. and Tech., 1993, 94: 147-165.
  • 5AZEVEDO L F A, WEBB B W, QUEIROZ M. Pulsed air jet impingement heat transfer[J]. Experimental Thermal and Fluid Science, 1994, 8(3): 206-213.
  • 6ZUMBRUNNEN D A, AZIZ M. Convective heat transfer enhancement due to intermittency in an impinging jet [J]. Trans. ASME J. Heat Transfer, 1993, 115: 91-98.
  • 7MLADIN E C, ZUMBRUNNEN D A. Local convective heat transfer to submerged pulsating jets[J]. Int. J. Heat and Mass Transfer, 1997, 40(14): 3 305-3 321.
  • 8COLUCCI D W, VISKANTA R. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet[J]. Experimental Thermal and Fluid Science, 1996, 13(1): 71-80.
  • 9ROYNE A, DEY C J. Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays [J]. Int. J. Heat and Mass Transfer, 2006, 49(3-4): 800-804.
  • 10SEYED-YAGOOBI J. Enhancement of heat and mass transfer with innovative impinging jets[J].Drying Technology, 1997, 14: 1 173-1 196.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部