摘要
石墨烯作为一种具有超高导热性能的二维纳米材料,不断引起人们的关注。实际应用中,石墨烯需附着在一定的衬底材料上,从而导致界面处强烈的声子散射和热导率的显著降低。为解决此类问题,本文采用一种原位催化生长技术制备出了金刚石/石墨烯复合材料。与转移到SiO_(2)/Si衬底的结构相比,在金刚石上生长得到的复合结构热导率被明显提高(约793 W·m^(-1)·K^(-1)),且石墨烯与金刚石衬底的界面热阻小于4.85×10^(-5)m^(2)·K·W^(-1)。这源于金刚石衬底为石墨烯提供了可观的热学贡献,而原位键合的生长让界面中产生有别于非键相互作用的杂化结构,使得界面热阻被降低。该结构优异的传热性能为石墨烯复合材料提供了一种新的方案。
As one of the two-dimensional nanomaterials with ultra-high thermal conductivity,graphene continues to attract people’s attention.In practical applications,graphene needs to be attached to a certain substrate material,which results in strong phonon scattering at the interface and a significant decrease in thermal conductivity.In order to solve such problems,this paper uses an in-situ catalytic growth technology to prepare a diamond/graphene composite material.Compared with the structure transferred to the SiO_(2)/Si substrate,the thermal conductivity of the composite structure grown on the diamond is significantly improved(793 W·m^(-1)·K^(-1)),and the interfacial thermal resistance between the graphene and the diamond substrate is less than 4.85×10^(-5)m^(2)·K·W^(-1).This is due to the fact that the diamond substrate provides a considerable thermal contribution to graphene,and the growth of in-situ bonding creates a hybrid structure in the interface that is different from the non-bonding interaction,so that the interface thermal resistance is reduced.The excellent heat transfer performance of this structure provides a new solution for graphene composite materials.
作者
李峰诚
原晓芦
邱琳
刘金龙
冯妍卉
张欣欣
LI Feng-Cheng;YUAN Xiao-Lu;QIU Lin;LIU Jin-Long;FENG Yan-Hui;ZHANG Xin-Xin(School of Energy and Environmental Engineering,University of Science and Technology Bejing,Beijing 100083,China;Institute for Advanced Materials and Technology,University of Science and Technology Bejing,Beijing 100083,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2021年第10期2642-2648,共7页
Journal of Engineering Thermophysics
基金
中央高校基本科研业务费专项资金(No.FRF-IDRY-19-004)
北京市自然科学基金资助项目(No.3202020,No.4192038)。
关键词
石墨烯
金刚石
原位催化生长技术
热导率
界面热阻
graphene
diamond
in-situ catalyzed growth technology
thermal conductivity
interfacial thermal resistance