期刊文献+

A Result on Fractional(a,b,k)-critical Covered Graphs 被引量:3

原文传递
导出
摘要 A fractional[a,b]-factor of a graph G is a function h from E(G)to[0,1]satisfying a≤d^(h)_(G)(v)≤b for every vertex v of G,where d^(h)_(G)(v)=∑e∈E(v)h(e)and E(v)={e=uv:u∈V(G)}.A graph G is called fractional[a,b]-covered if G contains a fractional[a,b]-factor h with h(e)=1 for any edge e of G.A graph G is called fractional(a,b,k)-critical covered if G—Q is fractional[a,b]-covered for any Q⊆V(G)with∣Q∣=k.In this article,we demonstrate a neighborhood condition for a graph to be fractional(a,b,k)-critical covered.Furthermore,we claim that the result is sharp.
作者 Si-zhong ZHOU
机构地区 School of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第4期657-664,共8页 应用数学学报(英文版)
基金 This work is supported by Six Big Talent Peak of Jiangsu Province,China(Grant No.JY-022).
  • 相关文献

参考文献3

二级参考文献4

  • 1Pulleyblank,w.R.,FractionalMatchings and the Edmonds-Gallai Theorem, Disc. Appl. Math.16,(1987),51-58.
  • 2Edward R.Scheinerman and Daniel H.Ullman,Fractional Graph Theory, John Wiley andSonc,Inc. New York (1997).
  • 3Liu Guizhen, On (g, f)-Covered Graphs. Atca. Math. Scientia.8, (1988),2,181-184.
  • 4Anstee,R.R.,An Algorithmic Proof Tutte's f-Factor Theorem, J.Algorithms6,(1985),112-131.

共引文献17

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部