期刊文献+

Multiple Bifurcations of Critical Period for a Quartic Kolmogorov Model

原文传递
导出
摘要 Our work is concerned with the bifurcation of critical period for a quartic Kolmogorov system.By computing the periodic constants carefully,we show that point(1,1)can be a weak center of fourth order,and the weak centers condition is given.Moreover,point(1,1)can bifurcate 4 critical periods under a certain condition.In terms of multiple bifurcation of critical periodic problem for Kolmogorov model,studied results are less seen,our work is good and interesting.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第4期673-681,共9页 应用数学学报(英文版)
基金 This paper is supported by National Natural Science Foundation of China(12061016) the Research Fund of Hunan provincial education department(18A525) the Hunan provincial Natural Science Foundation of China(2020JJ4630)。
  • 相关文献

参考文献2

二级参考文献14

  • 1Chicone, C. Review in MathSciNet, ref. 94h: 58072.
  • 2Chicone, C. The monotonicity of the period function for planar Hamiltonian vector fields. J. Differential Equation, 69(3): 310-321 (1987).
  • 3Chicone, C., Dumortier, F. Finiteness for critical periods of planar analytic vector fields. Nonlinear Anal., 20(4): 315-335 (1993).
  • 4Chicone, C., Jacobs, M. Bifurcations of critical periods for plane vector fields. Trans. Amer. Math. Soc., 312(2): 433-486 (1989).
  • 5Chavarriga, J., Sabatini, M. A survey of isochronous centers. Qualitative Theory of Dynamical Systems, 1(1): 1-70 (1999).
  • 6Coppel, W.A., Gavrilov, L. The period function of a Hamiltonian quadratic system. Differential Integral Equations, 6(6): 1357-1365 (1993).
  • 7De Maesschalck, P., Dumortier, F. The period function of classical Li~nard equations. J. Differential Equations, 233(2): 380-403 (2007).
  • 8Gasull, A., Zhao, Y. Bifurcations of critical periods from the rigid quadratic isochronous vector fields. Bull. Sci. Math., 132(4): 292-312 (2008).
  • 9Mafiosas, F., Villadelprat, J. The bifurcation set of the period function of the dehomogenized Loud's centers is bounded. Proc. Amer. Math. Soe., 136(5): 1631-1642 (2008).
  • 10Mardegid, P., Matin, D, Villadelprat, J. The period function of reversible quadratic centers. J. Differential Equations, 224(1): 226-258 (2006).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部