期刊文献+

熔盐槽式集热回路夜间热损失特性研究 被引量:3

NIGHTTIME THERMAL LOSS CHARACTERISTICS OF MOLTEN SALT PARABOLIC TROUGH LOOPS
下载PDF
导出
摘要 为研究以熔盐作为传热介质的槽式光热电站集热回路夜间低速循环工况的热损失特性,首先利用辐射热网络法和传热热阻原理建立集热管稳态传热模型,通过与典型实验数据对比,验证该模型的适用性和准确性。在此基础上,考察在夜间熔盐低速循环工况下,集热回路长度、环境温度、风速、熔盐流速、熔盐入口温度、集热管真空度等因素对集热回路热损失的影响。研究表明,回路长度、熔盐流速、熔盐入口温度和集热管真空度是集热回路夜间热损失性能的主要影响因素;相比之下,环境温度和风速对热损失的影响较小。 To investigate the thermal loss characteristics of the parabolic trough loops using molten salt as heat transfer fluid at night,the steady-state heat transfer model for the typical trough collector was established based on the energy balance and thermal resistance model.Good agreement was obtained between numerical results and experimental data,validating the applicability and accuracy of the model developed.On this basis,the effects of loop length,ambient temperature,wind velocity,molten salt velocity,molten salt inlet temperature and the vacuum level on thermal loss were systematically analyzed.Results indicated that,during the night condition,the loop length,molten salt velocity,molten salt inlet temperature and vacuum level are main influence factors for thermal loss performance.By contrast,the ambient temperature and wind speed have little influence.
作者 牛东圣 周治 赵亮 肖斌 Niu Dongsheng;ZhouZhi;Zhao Liang;Xiao Bin(ISorthwest Engineering Corporation Limited,Xi'an 710065,China;School of Energy and Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第9期198-204,共7页 Acta Energiae Solaris Sinica
基金 陕西省博士后科研资助项目(2018年度) 中国电建集团重大科技专项(DJ-ZDZX-2018-02)。
关键词 太阳能热发电 数值模型 传热 热损失 熔盐 槽式集热器 solar power generation numerical models heat transfer thermal loss molten salt parabolic trough collector
  • 相关文献

参考文献1

二级参考文献11

  • 1张耀明,王军,张文进,孙利国,刘晓辉.太阳能热发电系列文章(2) 塔式与槽式太阳能热发电[J].太阳能,2006(2):29-32. 被引量:27
  • 2Dudley V E, Kolb G J, Mahoney A R, et al. Test results: SEGS LS-2 solar collector[R]. Albuquerque: SANDIA National Iaboratories, 1994, 1-12.
  • 3Forristall R. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver[R]. Golden, Colorado: National Renewable Energy Laboratory, 2003, 5--16.
  • 4Incropera F P, DeWitt D P, Fundamentals of heat and mass transfer, third edition[M]. New York: John Wiley and Sons, 1990.
  • 5Ratzel A, Hickox C. Techniques for reducing thermal conduction and natural convection heat losses in annular receiver geometries[J]. Journal of Heat Transfer, 1979, 101(1): 108--119.
  • 6Bejan A. Convection heat transfer, second edition[M]. New York: John Wiley and Sons, 1995.
  • 7Martin M, Berdahl P. Characteristics of the infrared sky radiation in the tmited states[J]. Solar Energy, 1984, 33(6): 321--336.
  • 8Burkholder F, Kutscher C. Heat loss testing of sehott' s 2008 PIR70 parabolic trough receiver [EB/OL]. http://www. nrel. gov/csp/troughnet/pdfs/45633.pdf, 2009-05/2009-07.
  • 9Kennedy C E, Price H, Progress in development of high-temperature solar-selective coating[EB/OL]. http://www. nrel. gov/pv/pdfs/36997, pdf, 2005-06/2009-07.
  • 10Price H, l.tipfert E, Keamey D, et al. Advances in parabolie trough solar power technology [J].Journal of Solar Energy Engineering, 2002, 124(5): 110--125.

共引文献27

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部