期刊文献+

基于热力学平衡的高温固体氧化物电解水制氢模拟 被引量:12

SIMULATION OF HIGH TEMPERATURE SOLID OXIDE WATER ELECTROLYSIS FOR HYDROGEN PRODUCTION BASED ON THERMODYNAMIC EQUILIBRIUM
下载PDF
导出
摘要 通过热力学、动力学及通量平衡分析,采用Aspen Plus软件建立固体氧化物电解(SOEC)制氢的热力学平衡模型,并与实验结果进行对比验证。分析运行温度、压力、阴极水蒸气摩尔分数和阳极空气流量对系统运行特性的影响,并建立考虑余热利用的SOEC制氢系统模型,研究余热利用对制氢效率的影响。当电流密度为1.0 A/cm^(2)时,不同操作条件下的系统可利用热量占总输入能量的比例在26.53%~46.63%之间;在采用余热利用时,余热利用率可达52.27%以上,系统制氢效率可提高14.43%~26.54%。在1223.15 K、0.1 MPa下,阴极通入50 mol/h含水量为50%的氢气、阳极通入10 mol/h空气,电流密度约为0.78 A/cm^(2)时,制氢效率达到最大值90.56%,与不采用余热利用条件下相比提高约25.89%。 The thermodynamics,kinetics,and flux balance of water electrolysis by solid oxide electrolysis cell(SOEC)were analyzed,and a thermodynamic equilibrium model was established using Aspen Plus.The predicted results were first compared with experimental data published in literature,and a good consistency was found.The effect of operating temperature,pressure,steam mole fraction of the cathode inlet gas,and air flow rate in the anode channel on the SOEC performance were then investigated.Finally,the influence of thermal energy reutilization on system efficiency was emphasized.The results indicated that the amount of thermal energy available for reutilization accounts for 26.53%-46.63% of the total input energy when the current intensity is 1.0 A/cm^(2).If the SOEC system were properly configured,the waste heat utilization rate would be>52.27% when the current intensity is 1.0 A/cm^(2).Compared with the case without heat reutilization,the system efficiency increases by 14.43%-26.54%.When operating at 0.1 MPa,1223.15 K,50% H_(2)O in the cathode channel and 10 mol/h air in the anode channel,the system efficiency reaches a maximum of 90.56% at a current intensity of 0.78 A/cm^(2),25.89% higher than that without heat reutilization.
作者 张晨佳 蔡军 张玉魁 杜庶铭 孙振新 徐冬 Zhang Chenjia;Cai Jun;Zhang Yukui;Du Shuming;Sun Zhenxin;Xu Dong(School of Nuclear Science and Engineering,North China Electric Power University,Beijing 102206,China;Guodian New Energy Technology Research Institute Co.,Ltd.,Beijing Key Laboratory of Power Generation System Functional Material,Beijing 102209,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第9期210-217,共8页 Acta Energiae Solaris Sinica
基金 北京市科技计划课题(Z191100004619009) 中央高校基础科研项目(2018ZD10)。
关键词 固体氧化物 电解 制氢 模拟 余热利用 solid oxide electrolysis hydrogen production simulation waste heat utilization
  • 相关文献

参考文献10

二级参考文献214

  • 1谢晓峰,张迪,毛宗强,吴秋林.质子交换膜的研究现状与进展[J].膜科学与技术,2005,25(4):44-50. 被引量:22
  • 2张志勇,崔群,王海燕,黄冬,姚虎卿.甲醇水蒸汽转化制氢Cu_1Zn_1Al_(3.2)催化剂研究[J].高校化学工程学报,2007,21(2):251-256. 被引量:2
  • 3李继峰,张阿玲.混合式能源-经济-环境系统模型构建方法论[J].系统工程学报,2007,22(2):170-175. 被引量:14
  • 4Herring J S, O'Brien J E, Stoots C M, et al. Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology[J].Int J Hydrogen Energy, 2007, 32: 440-450.
  • 5Shin Yj, Park W, Chang J, et al. Evaluation of the high temperature electrolysis of steam to produce hydrogen [J].Int J Hydrogen Energy, 2007, 32:1486 - 1491.
  • 6Mueller-Langera F, Tzimasb E, Kaltschmitt M, et al, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term[J]. Int J Hydrogen Energy, 2007, 32: 3797 - 3810.
  • 7Kothari R, Budhdhi D, Sawhney R L. Comparison of environmental and economic aspects of various hydrogen production methods [J]. Renew Sust Energ Rev, 2008, 12: 553 - 563.
  • 8Dean J A. Lange's Handbook ol Chemistry[M]. 13th ed, New York: McGraw Hill Book Company, 1985.
  • 9Jensen S H, Larsen P H, Mogensen M. Hydrogen and synthetic fuel production from renewable energy sources [J]. Int J Hydrogen Energy, 2007, 32:3253 - 3257.
  • 10LIU Mingyi, YU Bo, XU Jingming, et al. Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production [J].J Power Sources, 2008, 177:493-499.

共引文献161

同被引文献205

引证文献12

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部