期刊文献+

基于序列到序列和注意力机制的超短期风速预测 被引量:15

ULTRA-SHORT-TERM WIND SPEED PREDICTION BASED ON SEQUENCE-TO-SEQUENCE AND ATTENTION MECHANISM
下载PDF
导出
摘要 风速具有较大的波动性,给风速预测带来较大难度。为解决以上问题,该文提出基于序列到序列和注意力机制的深度学习模型来进行超短期风速预测,首先采用1维卷积神经网络和门控循环单元对风速序列数据做编码处理,得到语义向量,然后使用注意力机制和门控循环单元对语义向量做动态解码,最后输出预测值,通过反向传播算法和梯度下降算法训练模型参数。在实际采集的风速数据上对模型的预测精度和性能做评估,实验结果表明:相较于其他模型,该模型提高了超短期风速预测精度和鲁棒性,具有较好的泛化能力,验证了所提模型的有效性。 Wind is intermittent in nature,which makes it difficult to predict wind speed.In order to solve this problems,a deep learning model based on sequence-to-sequence and attention mechanism is proposed to predict ultra-short-term wind speed.Firstly,1-D convolution neural network and Gate Recurrent Unit are used to encode the wind speed sequence data and obtain semantic vectors.Secondly,attention mechanism and Gate Recurrent Unit are used to predict ultra-short-term wind speed.The semantics vectors are decoded dynamically,and the predicted values are output.The model parameters are trained by back propagation algorithm and gradient descent algorithm.The experimental results show that the forecasting model improves the accuracy and robustness of ultra-short-term wind speed prediction.Compared with other models,the proposed model has better generalization ability.
作者 刘擘龙 张宏立 王聪 范文慧 Liu Bolong;Zhang Hongli;Wang Cong;Fan Wenhui(College of Electrical Engineering y Xinjiang University,Urumqi 830047,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第9期286-294,共9页 Acta Energiae Solaris Sinica
基金 新疆维吾尔自治区自然科学基金(2019D01C082) 国家自然科学基金(51767022,51967019,51575469)。
关键词 风速预测 深度学习 注意力机制 序列到序列 wind speed forecasting deep learning attention mechanism sequence to sequence
  • 相关文献

参考文献9

二级参考文献113

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 2李天云,谢家安,张方彦,李晓晨.HHT在电力系统低频振荡模态参数提取中的应用[J].中国电机工程学报,2007,27(28):79-83. 被引量:54
  • 3Catal~o J P S, Pousinho H M I, Mendes V M F. Short-term wind power forecasting in Portugal by neural networks and wavelet transform[J]. Renewable Energy, 2011, 36(4): 1245-1251.
  • 4Liu Da, Niu Dongxiao, Wang Hui, et al. Short-term wind speed forecasting using wavelet transform and support vector machinesoptimized by genetic algorithm[J]. Renewable Energy, 2014(62): 592-597.
  • 5Hui Liu, Hongqi Tian, Difu Pan, et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks[J]. Applied Energy, 2013, 6(107): 191-208.
  • 6Skittides C, Frtila W G. Wind forecasting using principal component analysis[J]. Renewable Energy, 2014(69): 365-374.
  • 7Ch~vez-ArroyoR, Lozano-Galiana S, Sanz-RodrigoJ, etal. On the application of principal component analysis for accurate statistical- dynamical downscaling of wind fields I J]. Energy Procedia, 2013(40): 67-76.
  • 8Chen Y, Luh P B, Guan C, et al. Short-term load forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
  • 9Fiedler M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(2): 298-305.
  • 10Malik J, Belongie S, Leung T, et al. Contour and texture analysis for image segmentation[J]. International Journal of Computer Vision, 2001 43(1): 7-27.

共引文献333

同被引文献126

引证文献15

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部