摘要
The main purpose of this paper is to study the collapse capacity of single degree of freedom(SDOF)systems and to produce fragility curves as well as collapse capacity spectra while considering a broad range of structural parameters,including system degradation,the P-Δeffect,ductility capacity and the post-capping stiffness ratio.The modified Ibarra-Krawinkler deterioration model was used to consider hysteretic behavior.A comprehensive study was conducted to extract the collapse capacity spectrum of SDOF systems with a wide range of periods,varying from 0.05 to 4 s,to cover short,intermediate and long periods.Incremental dynamic analysis(IDA)was performed for SDOF systems to identify the condition in which the collapse capacity of the system is determined.The IDAs were performed using different sets of seismic ground motions.The ground motion records were categorized into different sets based on three spectral shape parameters,including the epsilon,SaRatio and N_(p).The collapse fragility curves of SDOF systems with different periods were extracted to illustrate the collapse capacity at different probability levels.The results show that structural degradation and ductility as well as the spectral shape parameters significantly affect the collapse capacity of SDOF systems.On the other hand,the post-capping stiffness ratio and small levels of the P-Δeffect do not remarkably change collapse capacity.Also,the collapse capacity of SDOF systems is more sensitive to the records categorized based on SaRatio and N_(p)than those classified based on epsilon.