期刊文献+

PtTi0.5Zr0.2/Ti微叠层复合材料的制备及性能研究

Preparation and Properties of PtTi0.5Zr0.2/Ti Micro-laminated Composites
下载PDF
导出
摘要 将0.14 mm厚PtTi0.5Zr0.2合金片和0.08 mm厚Ti片依次叠放,经850℃/2 h真空热压烧结后,分别采用冷轧和热轧工艺制备PtTi0.5Zr0.2/Ti微叠层复合材料。研究了轧制工艺对微叠层复合材料微观组织及力学性能的影响。结果表明:在850℃热压烧结2 h,叠层复合材料界面形成冶金结合,并有少量Ti_(3)Pt金属间化合物形成;采用冷轧工艺,单道次变形量为10%~15%,累积变形量至50%后进行500℃/1 h中间退火,然后继续冷轧直至复合坯厚度至0.2 mm、总变形量超过90%,由此得到的PtTi0.5Zr0.2/Ti微叠层复合材料的层间距为20~30μm,且各叠层保持连续,厚度均匀,平行度好;PtTi0.5Zr0.2/Ti微叠层复合材料抗拉强度为657 MPa,延伸率达9.46%。 The 0.14 mm thick PtTi0.5 Zr0.2 alloy sheet and the 0.08 mm thick Ti sheet were stacked in sequence. After sintering at 850 ℃ for 2 h under vacuum hot pressing, the PtTi0.5 Zr0.2/Ti micro-laminated composite was prepared respectively by cold rolling and hot rolling. The microstructure and mechanical properties of the micro-laminated composites were evaluated.The results show that when hot pressing at 850 ℃ for 2 h, metallurgical bonding is formed at the interface of the composite, and a small amount of Ti_(3)Pt intermetallic compound is also formed. The PtTi0.5 Zr0.2/Ti micro-laminated composite is produced by cold rolling with 10%~15% single pass deformation, and when the deformation is accumulated to 50%,the intermediate annealing is carried out at 500 ℃ for 1 h. Finally, the total deformation exceeds 90% and the thickness of composite billet is rolled to 0.2 mm. The layer of PtTi0.5 Zr0.2/Ti micro-laminated composite with the layer spacing of 20~30 μm is continuous. Besides, each layer also has uniform thickness and good parallelism. The tensile strength of PtTi0.5 Zr0.2/Ti micro-laminated composite is 657 MPa and the elongation is 9.46%.
作者 范晔 杨娟 孟志军 马小龙 Fan Ye;Yang Juan;Meng Zhijun;Ma Xiaolong(Xi’an Nobel Rare Metal Materials Co.,Ltd.,Xi’an 710065,China)
出处 《钛工业进展》 CAS 2021年第5期27-30,共4页 Titanium Industry Progress
基金 国家自然科学基金项目(51164034)。
关键词 热压烧结 轧制 微叠层材料 力学性能 hot press sintering rolling micro-laminated composite mechanical properties
  • 相关文献

参考文献5

二级参考文献62

  • 1陈宏平,李垚,韩杰才,曾岗.EB-PVD制备NiCoCrAlY/NiCr微层板的拉伸性能研究[J].宇航材料工艺,2004,34(3):47-50. 被引量:1
  • 2Clegg W J, Kendall K, Alford N M. A simple way to make tough ceramics. Nature, 1990; 347 (10): 455 ~ 457.
  • 3Wadsworth J, Lesuer D R. Ancient and modern laminated composites-from the great pyramid of gizeh to Y2K. Mater Characterization,2000; 45: 289 ~ 313.
  • 4Lesuer D R, Syn C K, Sherby O D et al. Mechanical behavior of laminated metal composites. Int. Mater. Rev.,1996; 41(5): 169 ~ 197.
  • 5Shah D M, Anton D L,Pope D P et al. In-situ refractory intermetallic-based composites. Mater. Sci. & Eng. A,1995; 192/193: 658 ~672.
  • 6Jeske T, Schmitz G. Influence of the microstructure on the interreaction of Al/Ni investigated by tomographic atom probe. Mater. Sci. &Eng. A, 2002;327:101 ~108.
  • 7Was G S, Foecke T. Deformation and fracture in microlaminates. Thin Solid Films, 1996; 286: 1 ~ 31.
  • 8Jalonen P, Tuominen A. The effect of sputtered interface metallic layers on reinforced core laminate making build-upstructures. Microelectronics Reliability,2002 ; 42:1 075 ~ 1 079.
  • 9Bloyer D R, Venkateswara Rao K T, Ritchie R O. Laminated Nb/Nb3 Al composites: effect of layer thickness on fa tigue and fracture behavior. Mater Sci. & Eng. A, 1997; 239/ 240: 393 ~ 398.
  • 10Banerjee R, Thompson G B, Anderson P M et al. Sputter deposited nanocrystalline Ni-25Al alloy thin films and Ni/Ni3Almultilayers. Thin Solid Films, 2003; 424:93 ~ 98.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部