期刊文献+

Specific heat ratio effects of compressible Rayleigh—Taylor instability studied by discrete Boltzmann method 被引量:6

原文传递
导出
摘要 Rayleigh-Taylor(RT)instability widely exists in nature and engineering fields.How to better understand the physical mechanism of RT instability is of great theoretical significance and practical value.At present,abundant results of RT instability have been obtained by traditional macroscopic methods.However,research on the thermodynamic non-equilibrium(TNE)effects in the process of system evolution is relatively scarce.In this paper,the discrete Boltzmann method based on non-equilibrium statistical physics is utilized to study the effects of the specific heat ratio on compressible RT instability.The evolution process of the compressible RT system with different specific heat ratios can be analyzed by the temperature gradient and the proportion of the non-equilibrium region.Firstly,as a result of the competition between the macroscopic magnitude gradient and the non-equilibrium region,the average TNE intensity first increases and then reduces,and it increases with the specific heat ratio decreasing;the specific heat ratio has the same effect on the global strength of the viscous stress tensor.Secondly,the moment when the total temperature gradient in y direction deviates from the fixed value can be regarded as a physical criterion for judging the formation of the vortex structure.Thirdly,under the competition between the temperature gradients and the contact area of the two fluids,the average intensity of the non-equilibrium quantity related to the heat flux shows diversity,and the influence of the specific heat ratio is also quite remarkable.
作者 Lu Chen Huilin Lai Chuandong Lin Demei Li 陈璐;赖惠林;林传栋;李德梅(College of Mathematics and Statistics,FJKLMAA,Center for Applied Mathematics of Fujian Province(FJNU),Fujian Normal University,Fuzhou,350117,China;Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai,519082,China)
出处 《Frontiers of physics》 SCIE CSCD 2021年第5期199-210,共12页 物理学前沿(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.51806116 and 11875001) the Natural Science Foundation of Fujian Province(Grant No.2018J01654).
  • 相关文献

参考文献11

二级参考文献444

  • 1Rayleigh L 1883 Proc. London Math. Soc. 14 170
  • 2Chandrasekhar 1981 Hydrodynamic and Hydromagnetic Stability (New York: Dover) pp 428 477
  • 3Kilkenny J D, Glendinning S G, Haan S W, Hammel B A, Lindl J D, Munro D, Remington B A, Weber S V, Knauer J P and Verdon C P 1994 Phys. Plasmas 1 1379
  • 4Remington B A, Weber S V,Marinak M M, Haan S W, Kilkenny J K, Wallace R J and Dimonte G 1995 Phys. Plasmas 2 241
  • 5Sharp D H 1984 Physica D 12 3
  • 6Bernstein I B and Book D L 1983 Phys. Fluids 26 453
  • 7Baker L 1983 Phys. Fluids 26 950
  • 8Livescu D 2004 Phys. Fluids 16 118
  • 9Ribeyre X, Tikhonchuk V T and Bouquet S 2004 Phys. Fluids 16 4661
  • 10Ribeyre X, Tikhonchuk V T and Bouquet S 2005 Phys. Fluids 17 069102

共引文献51

同被引文献50

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部