期刊文献+

基于YOLOV5网络模型的市政道路检测识别 被引量:5

Municipal Road Detection and Recognition Based on YOLOV5Network Model
下载PDF
导出
摘要 根据十四五规划中提出的加快智能化城市建设服务体系,市政道路是智慧城市建设的重要内容,道路损坏检测则是保证市政道路良好管理的重要手段。本文利用YOLOV5算法经过数据集制作、实验设定、模型训练、问题识别等过程对呼和浩特市市政道路损害情况识别,识别后通过系统及时告知维修人员检修,大大节省了人力和时间成本。对数据集中2000多张市政道路图像进行标注及分类及模型训练,实验表明,本文的模型mAP达到了0.9以上,该方法可以提高市政道路图像的检测精度。 Detection and identification of municipal roads based on yolov5network model according to the service system of accelerating intelligent urban construction proposed in the 14th five year plan,municipal roads are an important part of smart city construction,and road damage detection is an important means to ensure good management of municipal roads.In this paper,yolov5algorithm is used to identify the damage of municipal roads in Hohhot through the process of data set production,experimental setting,model training and problem identification.After identification,the maintenance personnel are informed of maintenance in time through the system,which greatly saves manpower and time costs.More than 2000municipal road images in the data set are labeled,classified and trained.The experiments show that in the final model evaluation and test,the real positive samples in the precision sample are predicted to be more than 0.9,and the positive samples in the recall rate of more than 0.9are predicted correctly.
作者 韩佳彤 张宏娜 李召波 任星润 翟强 冯茂盛 石东升 马政 HAN Jiatong;ZHANG Hongna;LI Zhaobo;REN Xingrun;ZHAI Qiang;FENG Maosheng;SHI Dongsheng;MA Zheng(Hohhot Municipal Construction Service Center,Hohhot 010020,China;College of Civil Engineering,Inner Mongolia University of technology,Hohhot 010070,China;Inner Mongolia Qingcheng Urban and Rural Construction Research Institute,Hohhot 010070,China;Inner Mongolia Xingtai Construction Group,Erdos 017000,China)
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2021年第5期514-519,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古自治区草原英才项目(CYYC5039) 内蒙古自治区人才开发基金资助项目 内蒙古自治区科技成果转化项目。
关键词 深度学习 市政基础设施 YOLOV5算法 特征检测识别 deep learning municipal infrastructure yolov5algorithm feature detection and recognition
  • 相关文献

参考文献9

二级参考文献22

共引文献92

同被引文献33

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部