期刊文献+

快速仿射非局部均值图像去噪 被引量:4

Fast affine non-local means image denosing
下载PDF
导出
摘要 针对仿射非局部均值(ANLM)算法对图像去噪过程中出现用时过长的问题,提出了一种快速仿射非局部均值去噪(F-ANLM)算法。通过对算法的研究和用时分析得知,仿射变换和关于仿射不变相似性度量的计算这2个模块占时最多,因此从这2个部分入手提出优化策略。算法首先使用仿射协变结构张量其特征向量的夹角代替尺寸不变特征变换(SIFT)算子的主方向,简化了仿射变换过程;然后将ANLM方法中的仿射不变相似性度量改写为离散卷积的形式,使用快速傅里叶变换减少卷积的运算量,加速仿射协变特征区域之间相似性度量的计算。实验证明,F-ANLM方法简化了仿射变换和仿射不变相似性度量的计算,与原来ANLM算法相比,速度得到很大的提升。 To address the problem of high time consumption of the affine non-local mean(ANLM)algorithm in the denoising process,a fast affine non-local mean denoising(F-ANLM)algorithm was proposed.Through time analysis of the affine non-local mean algorithm,it was known that the two modules,the affine transformation and the calculation of the affine invariant similarity measure,were the most time-consuming.Therefore,the optimization strategy was proposed from these tworegards.The algorithm first employed the included angle of the feature vector of the affine covariant structure tensor instead of the main direction of the SIFT operator,and then rewrote the affine invariant similarity measure in the ANLM method into the form of discrete convolution.In addition,the Fast Fourier Transform was adopted to reduce the amount of convolution operation and accelerate the calculation of similarity measures between affine covariant feature regions.Experiments show that the F-ANLM algorithm can simplify the calculation of affine transformation and affine invariant similarity measures,and greatly increase the speed compared with the original ANLM algorithm.
作者 陈玲玲 周旭东 谢傢成 刘乾 CHEN Ling-ling;ZHOU Xu-dong;XIE Jia-cheng;LIU Qian(School of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225127,China)
出处 《图学学报》 CSCD 北大核心 2021年第5期762-766,共5页 Journal of Graphics
基金 国家自然科学基金项目(61801417)。
关键词 非局部 结构张量 仿射不变 卷积 相似性度量 快速傅里叶 non-local structure-tensor affine-invariant convolution similarity-measure Fast-Fourier
  • 相关文献

参考文献3

二级参考文献33

  • 1毛志红,马利庄,赵明喜.鲁棒估计器在3D网格降噪中的应用[J].软件学报,2007,18(2):453-460. 被引量:7
  • 2Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.
  • 3Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion (Ⅱ). Journal of Numerical Analysis, 1992, 29(3): 845-866.
  • 4Yin L, Yang R, Gabbouj M, Neuvo Y. Weighted median filters: A tutorial. IEEE Trans. Circuits and Systems, 1996, 43(3): 157-192.
  • 5Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. the Sixth International Conference on Computer Vision, Bombay, India, 1998, pp.839-846.
  • 6Donoho D. De-noising by soft-thresholding. IEEE Trans. Information Theory, 1995, 41(3): 613-627.
  • 7Chambolle A, DeVore R A, Lee N Y, Lucier B J. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Processing, 1998, 7(1): 319-335.
  • 8Cohen I, Raz S, Malah D. Translation invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3): 201-223.
  • 9Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Processing, 2003, 12(11): 1338- 1351.
  • 10Romberg J, Choi H, Baraniuk R G. Bayesian tree-structured wavelet-domain image modeling using hidden Markov models. IEEE Trans. Image Processing, 2001, 10(7): 1056-1068.

共引文献40

同被引文献38

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部