期刊文献+

大规模类脑计算系统BiCoSS:架构、实现及应用 被引量:3

Large-scale Brain-inspired Computing System BiCoSS: Its Architecture,Implementation and Application
下载PDF
导出
摘要 人脑具有协同多种认知功能的能力与极强的自主学习能力,随着脑与神经科学的快速发展,亟需计算结构模拟人脑的、性能更强大的计算平台进行人脑智能与认知行为机制的进一步探索.受人脑神经机制的启发,本文提出了基于神经认知计算架构的众核类脑计算系统BiCoSS,该系统以并行计算的现场可编程门阵列(Field-programmable gate array,FPGA)为核心处理器,以地址事件表达的神经放电作为信息传递载体,以具有认知计算功能的神经元作为信息处理单元,实现了四百万神经元数量级大规模神经元网络认知行为的实时计算,填补了从细胞动力学层面理解人脑认知功能的鸿沟.实验结果从计算能力、计算效率、功耗、通信效率、可扩展性等方面显示了BiCoSS系统的优越性能.BiCoSS通过人脑信息处理的计算架构以更贴近神经科学本质的模式实现了类脑智能;同时,BiCoSS为神经认知和类脑计算的研究和应用提供了新的有效手段. Human brain has the ability of integrating multiple cognitive functions and strong autonomous learning capability.With the rapid development of neuroscience,it is important and necessary to implement a brain simulation platform with higher performance that is inspired by brain structure to further explore the brain intelligent and mechanism of cognitive behaviors.Inspired by the mechanism of human neural system,a multi-core brain simulation system BiCoSS is presented in this paper,which is based on neurocognitive structure.The presented system uses parallel computing field-programmable gate array(FPGA)as core processor,address event representation(AER)neural spikes as carrier of information transmission,neuron with cognitive computing functions as information processing unit.It realizes the real-time computing of cognitive behaviors in a large-scale neural network with four million neurons,and bridges the gap from the cellular dynamics level to comprehend the human brain cognition functions.The superior performance of BiCoSS is shown in terms of computing power,computing efficiency,power consumption,communication efficiency and scalability.BiCoSS realizes brain-like intelligence based on the computing architecture of brain information processing that is closer to the essence of neuroscience,and provides new effective methods for the research and application of neural cognition and brain-like computing.
作者 杨双鸣 郝新宇 王江 李会艳 魏熙乐 于海涛 邓斌 YANG Shuang-Ming;HAO Xin-Yu;WANG Jiang;LI Hui-Yan;WEI Xi-Le;YU Hai-Tao;Deng Bin(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072;School of Automation and Electrical Engineering,Tianjin University of Technology and Educations,Tianjin 300222)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第9期2143-2158,共16页 Acta Automatica Sinica
基金 国家自然科学基金(61871287,61671320,61601320,61771330,62071324,62006170) 中国博士后科学基金(2021T140510,2020M680885) 天津市自然科学基金(18JCZDJC32000)资助。
关键词 类脑计算 脉冲神经网络 神经形态硬件 类脑智能 Brain-like computing spiking neural network neuromorphic engineering brain-like intelligence
  • 相关文献

参考文献6

二级参考文献108

共引文献399

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部