期刊文献+

基于自动机器学习的不平衡故障诊断方法 被引量:8

New automated machine learning based imbalanced learning method for fault diagnosis
下载PDF
导出
摘要 为了提升故障诊断模型在数据不平衡场景下的性能,提出一种基于贝叶斯优化的自动不平衡故障诊断方法。首先,构建了一种分层多模型的参数空间,探索重采样和分类器的算法组合选择和超参数优化;然后,使用基于树形结构Parzen估计器(TPE)的贝叶斯优化器进行模型的训练与优化,得到参数空间中最优的算法组合和超参数配置;最后使用最优配置模型在测试集上进行结果评估。将所提方法应用于UCI(university of California Irvine)不平衡标准数据集和滚动轴承数据集。实验通过设置多个不平衡比,对优化后的模型分类效果进行检验,并与传统的随机搜索方法进行对比。结果表明,所提方法更好地提升了模型在不平衡故障数据上的分类能力,且优化过程更加高效。 To improve the performance of fault diagnosis models in imbalance dataset,an automatic imbalance fault diagnosis method based on Bayesian optimization was proposed.A hierarchical multi-model configuration space was constructed to explored the combination selection of resampling and classifier with their hyperparameters in this configuration space.Then a Bayesian optimizer based on Tree-structured Parzen Estimator(TPE)was used to optimize model training procedure.After training,an optimal model in the configuration space was obtained.The optimal configuration model was used to evaluate the results on the test dataset.The proposed method was applied to University of California Irvine(UCI)imbalance dataset and rolling bearing dataset.Experiments evaluated classification improvement after optimization by setting multiple imbalance ratios.Comparison with random search method was also conducted.The results showed that the proposed method improved the model classification performance better in imbalance fault diagnosis dataset,and optimization process is more efficient.
作者 孙晨 文龙 李新宇 高亮 丛建臣 SUN Chen;WEN Long;LI Xinyu;GAO Liang;CONG Jianchen(State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;School of Mechanical Engineering and Electronic Information, China University of Geoscience, Wuhan 430074, China;School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第10期2837-2847,共11页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51805192) 湖北省科技重大专项资助项目(2020AEA009) 数字与装备国家重点实验室开放资助项目(DMETKF2020029) 山东省重点研发计划(重大科技创新工程和结转项目)资助项目(2019JZZY010445)。
关键词 自动机器学习 数据不平衡 故障诊断 贝叶斯优化 automated machine learning imbalanced data fault diagnosis Bayesian optimization
  • 相关文献

参考文献7

二级参考文献117

  • 1张建明,曾建武,谢磊,王树青.基于粗糙集的支持向量机故障诊断[J].清华大学学报(自然科学版),2007,47(z2):1774-1777. 被引量:23
  • 2王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究[J].振动工程学报,2006,19(2):242-245. 被引量:17
  • 3胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 4Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719.
  • 5Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738.
  • 6Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009.
  • 7Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.
  • 8Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines by parameter estimation using adaptive Kalman filter[C]. Proc of 2007 Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007: 1-6.
  • 9Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system: Detectability analysis[J]. Computers and Chemical Engineering, 2004, 28(12): 2635-2646.
  • 10Janos Gertler. Analytical redundancy methods in fault detection and isolation[C]. Proc of IFAC/ IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes. Baden-Baden: Pergamon Press, 1991.

共引文献639

同被引文献64

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部