期刊文献+

基于机器学习的工业蒸汽量预测方法

INDUSTRIAL STEAM PREDICTION METHOD BASED ON MACHINE LEARNING
下载PDF
导出
摘要 锅炉燃料燃烧产生的蒸汽在工业火电厂中有非常重要作用,根据锅炉的工况,预测产生的蒸汽量,有利于实时监测锅炉燃烧效率。对锅炉工况数据进行预处理和特征工程提取出有用特征,对提取的特征构造多种机器学习算法模型,并将多模型进行融合。结果表明:多种机器学习算法融合后的模型优于单一模型的准确率,融合后的模型预测蒸汽量的均方根误差为0.106,为工业实时监测锅炉燃烧效率提供了重要参考依据。 The steam produced by boiler fuel combustion has a very important role in industrial thermal power plants.Predicting the amount of steam produced according to the working conditions of boiler is conducive to the real-time monitoring of boiler combustion efficiency.Useful features of the boiler data are extracted by preprocessing and feature engineering,a variety of machine learning algorithm models are constructed for the extracted features,and the multiple models are merged.The results show that the fused model of multiple machine learning algorithms is superior to the single model in accuracy,and the root mean square error of steam predicted by the fused model is 0.106,providing important reference for the real-time industrial monitoring of boiler combustion efficiency.
作者 苑丹丹 Yuan Dandan(SINOPEC Engineering Incorporation,Beijing,100101)
出处 《石油化工设计》 CAS 2021年第4期35-38,I0002,I0003,共6页 Petrochemical Design
关键词 数据预处理 特征工程 机器学习算法 模型融合 data preprocessing feature engineering machine learning algorithm model fusion
  • 相关文献

参考文献5

二级参考文献31

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部