期刊文献+

南海三维热岩石圈结构及地表构造响应 被引量:2

Three-dimensional thermal structure of the lithosphere and its relationship to surface structure in the South China Sea
下载PDF
导出
摘要 为系统了解南海海底热流特征和岩石圈热结构与地表构造的关系,本文首先以最新海底热流为约束,采用三维数值模拟方法计算得到整个南海的“热”岩石圈底部边界(底界)的埋深,然后开展详细分析壳、幔热流贡献以及岩石圈热结构与地表不同构造单元之间的对应关系.结果显示南海岩石圈底部边界埋深为30~100 km,最浅埋深集中分布在南海海盆水深大于3000 m的区域(如南海西北次海盆、西南次海盆和东部次海盆西侧),以及南海北部陆缘中部、莺歌海盆地、中建南盆地和南薇西盆地,体现了南海深部结构对地表不同构造单元的控制作用;靠近海盆东侧的马尼拉海沟具有较低的海底热流,对应岩石圈底界埋藏也较深,可能与南海和古南海洋壳俯冲有关;吕宋岛弧(119°E—122°E和13°N—17°N)表现出较高的海底热流,同时具有较浅的热岩石圈底界埋深,可能与南海板块和菲律宾海板块双向俯冲有关. This paper systematically studies the seafloor heat flow characteristics,the lithospheric thermal structure,and its relationship to the surface structures in the South China Sea.A three-dimensional numerical method is used to obtain the lithospheric depth of the entire South China Sea region under constraints of the newly compiled seafloor heat flow data.Then the contribution to the heat flow from the crust and mantle,respectively,and relationships between the surface tectonic units and the lithospheric thermal structure are analyzed.Results show that the depth of the lithosphere-asthenosphere boundary(LAB)in the South China Sea is 30~100 km.The shallowest LAB appears in the water depth of more than 3000 m in the South China Sea Basin,such as the northwestern sub-basin,the southwestern sub-basin,and the western side of the eastern sub-basin,as well as in the middle of the northern continental margin of the South China Sea,the Yinggehai Basin,Zhongjiannan Basin and Nanweixi Basin,reflecting the control of deep structure on different structural units on the surface.Along the Manila Trench in the east side of the South China Sea basin,the deep LAB and low heat flow are probably related to the subduction of the South China Sea and the Paleo-South China Sea.On the contrary,the Luzon Island Arc(area 119°E—122°E and 13°N—17°N),located in the intersection of the Manila trench and the extinct South China Sea spreading ridge,has a shallow LAB and high heat flow,which are probably related to the opposite subduction of the South China Sea Plate and the Philippine Sea Plate.
作者 王晓芳 王恺祺 赵中贤 许鹤华 赵俊峰 任自强 张佳政 WANG XiaoFang;WANG KaiQi;ZHAO ZhongXian;XU HeHua;ZHAO JunFeng;REN ZiQiang;ZHANG JiaZheng(Key Laboratory of Ocean and Marginal Sea Geology,South China Sea Institute of Oceanology,Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences,Guangzhou 511458,China;Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,China;China Academy of Building Research,Beijing 100013,China;Three Gorges Geotechnical Consultants Co.,Ltd.,Wuhan 430074,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第11期4105-4116,共12页 Chinese Journal of Geophysics
基金 国家自然科学基金-广东联合基金项目(U20A20100) 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104,GML2019ZD0204,GML2019ZD0205) 广东省基金项目(2020A1515010502) 中国科学院南海生态环境工程创新研究院自主部署项目(ISEE2018PY02) 国家自然科学基金项目(91958212,41730532,41506063,91428205,42076077) 中国科学院青年创新促进会 广州市科技计划项目(201904010285)、王宽诚教育基金会(GJTD-2018-13)联合资助.
关键词 三维热岩石圈结构 海底热流 壳幔热流贡献比 南海 3D thermal structure of lithosphere Seafloor heat flow Crust-mantle heat flow contribution ratio South China Sea
  • 相关文献

参考文献36

二级参考文献390

共引文献961

同被引文献49

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部