期刊文献+

基于临界换热系数与干预时间的车用锂电池热设计及运行策略

Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time
下载PDF
导出
摘要 针对车用锂电池在高倍率放电情况下的热管理问题开展研究。基于电池生热量和散热量匹配的热管理理念,创新性地提出了确保电池热安全运行的临界换热系数h_(cr),并基于单电池的热电耦合模型发展了一种确定临界换热系数的数值分析方法。对极端工况下的18650锂电池进行临界换热系数的数值研究,发现放电倍率和换热环境温度是其主要影响因素。换热环境温度和放电倍率增加,临界换热系数会急剧增加。为了进一步提高电池的热安全运行能力,针对h<h_(cr)的工作状况,提出了基于干预时间τ_(intv)的热管理运行策略,并详细讨论了干预时间τ_(intv)的数值确定方法和影响因素。数值结果显示,在干预时间内对锂电池实现降倍率运行等措施,可以有效地将电池温度控制在安全范围内。进一步研究还发现,给定h的锂电池干预时间受放电倍率、环境温度等因素的影响较大。本文的工作对车用锂电池热管理系统的设计以及运行管理有着良好的理论指导意义。 The thermal management of automotive lithium batteries during high-rate discharge is being investigated.Based on the thermal management concept of matching the heat generation and heat dissipation of the battery,the critical heat transfer coefficient hcr is innovatively proposed to ensure the battery's safe operation,and a set of numerical solution methods for determining h_(cr) is developed.For numerical calculation,a thermoelectric coupling model of a single cell is established.The findings indicate that the critical heat transfer coefficient of a given lithium battery is related to the discharge rate and the temperature of the heat exchange environment,and is less affected by the battery's initial temperature.The critical heat transfer coefficient increases sharply once the ambient temperature exceeds 293.15 K.A thermal management operation strategy based on the intervention time τ_(intv) is proposed for the working condition of h<h_(cr) to further improve the battery's thermal safety operation capability.Furthermore,the numerical determination method,influencing factors,and intervention effect of intervention time are thoroughly examined. The results show that theintervention time of the lithium battery for a given h is greatly affected by the discharge rate,and the reduced rate operation of the lithium battery during the intervention time caneffectively control the battery temperature within a safe range This work has importanttheoretical implications for the design and operation management of the vehicle lithium batterythermal management system.
作者 许国良 张玉洁 黄晓明 何锐 XU Guoliang;ZHANG Yujie;HUANG Xiaoming;HE Rui(School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,Hubei,China;China Guangdong Nuclear Power Engineering Co,Ltd,Shenzhen 518000,Guangdong,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2021年第6期2252-2259,共8页 Energy Storage Science and Technology
关键词 锂离子电池 热管理 临界等效换热系数 干预时间 lithium-ion battery thermal management critical equivalent heat transfer coefficient intervention time
  • 相关文献

参考文献8

二级参考文献42

  • 1齐晓霞,王文,邵力清.混合动力电动车用电源热管理的技术现状[J].电源技术,2005,29(3):178-181. 被引量:28
  • 2姚仲鹏,王瑞君.传热学[M].第2版.北京:北京理工大学出版社,2003:201-202.
  • 3张承宁,董玉刚,雷治国.锂离子动力电池组线路板通电生热式加热装置:中国,ZL201010581892.0[P].2011-05-25.
  • 4CHEN S C, WAN C C, WANG Y Y.Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005,140:111-124.
  • 5THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes [J].Joumal of the Electrochemical Society, 2003,150(2): A 176-A 192.
  • 6FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePOdgraphite lithium-ion battery[J]. Journal of Power Sources, 201 O, 195:2961-2968.
  • 7THOMAS K E, THESIS PH D. Lithium-ion batteries: Thermal and interfaeial phenomena [M]. Berkeley: University of California, 2002.
  • 8THOMAS K E, BOGATU C, NEWMAN J. Measurement of the en- tropy of reaction as a fimction of state of charge in doped and un- doped lithium manganese oxide [J].Joumal of the Electrochemical Society,2001, 148(6):A 570-A 575.
  • 9李文成.电动汽车用C-LiFePO4动力电池制备与性能研究[D].北京:北京有色金属研究总院,2011:73-74.
  • 10Payne J, Niedzwiecki M, Ketkar S, et al. Thermal characteriza- tion and management of PHEV battery packs[ J]. Training,2009, (2013): 11-13.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部