期刊文献+

正则稀疏反幻方和图标号

Regular Sparse Anti-magic Squares and Graph Labelings Two-phase Flow System Describing Spray Model
下载PDF
导出
摘要 幻方和反幻方是组合数学中的一类重要研究对象,在图标号中有着很好的应用.首次提出均匀正则稀疏矩阵和伪稀疏反幻方的概念,给出了稀疏反幻方的新构造,证明了一个强的正则的密度为n-1的n阶稀疏反幻方存在当且仅当n≥4且n是偶数,从而K_(n,n)的(n-1)-正则二部子图是顶点全幻标号的. Magic squares and anti-magic squares are important research objects in combinatorics,and they are also well used in constructing graph labelings.The notions of uniform regular sparse array and pseudo sparse anti-magic square are introduced firstly and they are used in constructing sparse anti-magic squares.It is proved that there exists a regular strong sparse anti-magic squares of order n with density n-1 if and only if n≥4 and n is even.Furthermore,(n-1)-regular bipartite subgraphs of K_(n,n) are vertex-magic total labeling.
作者 牛晓东 丁亚茹 陈光周 NIU Xiaodong;DING Yaru;CHEN Guangzhou(School of Mathematics and Information Science,Henan Normal University,Henan Xinxiang 453007,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2021年第6期541-552,共12页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11871417)。
关键词 幻方 反幻方 稀疏反幻方 正则 图标号 magic square anti-magic square sparse anti-magic square regular graph labelings
  • 相关文献

参考文献1

二级参考文献6

  • 1Denes J, Keedwell A D. Latin Squares and their Applications. London-Budapest: the English Uni- versities Press, 1974.
  • 2Gray I D. New Construction Methods for Vertex-magic Total Labelings of Graphs. Ph.D. Thesis, University of Newcastle, Newcastle, Australia, 2006.
  • 3Gray I D. Vertex-magic Total Labelings of Regular Graphs. SIAM Joural of Discrete Mathematics, 2007, 21:170-177.
  • 4Gray I D, MacDougall J A. Sparse Semi-magic Squares and Vertex-magic Labelings. Ars Combina- toria, 2006, 80:225-242.
  • 5Hagedorn T R. On the Existence of Magic n-dinensional Rectangles. Discrete Math., 1999, 207: 53 63.
  • 6Cao H T, Li W. Existence of Strong Symmetric Self-orthogonal Diagonal Latin Squares. Discrete Math., 2011, 311:841-843.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部