期刊文献+

基于高斯采样的改进RRT*路径规划算法 被引量:1

An Improved RRT*Path Planning Algorithm Based on Gaussian Sampling
下载PDF
导出
摘要 针对渐进最优快速扩展随机树(RRT*)算法随机性大,搜索效率低的问题,提出一种结合目标偏置概率策略与缩小相对状态空间的改进算法(G-RRT*)。该算法在保持RRT*原有的优势基础上以一定概率使采样点偏置为目标点,提高路径规划的导向性,并结合高斯分布缩减相对状态空间,限制随机树的扩展方向,从而加快路径规划的速度,保证以较短时间找到渐进最优路径。在MATLAB平台上分别对二维平面路径规划和三维机械臂路径规划测试。结果表明:G-RRT*算法有效减少了路径距离开销和计算时间,具有一定的应用价值。 Aiming at the problem of the asymptotically optimal rapid expansion random tree(RRT*)algorithm has large randomness and low search efficiency,an improved algorithm(G-RRT*)combining the target bias probability strategy and the relative state space reduction(G-RRT*)is proposed.The algorithm keeps the original advantages of RRT*and uses a certain probability to bias the sampling point as the target point,which improves the guidance of path planning,and combines the Gaussian distribution to reduce the relative state space,restricts the expansion direction of the random tree,and speeds up the path The speed of planning ensures that the gradual optimal path can be found in a short time.The two-dimensional planar path planning and the three-dimensional robotic arm path planning were tested on the MATLAB platform.The results show that the G-RRT*algorithm effectively reduces the path distance cost and calculation time,and has certain application value.
作者 杜亚南 施露露 吴京城 闻路红 DU Ya-nan;SHI Lu-lu;WU Jing-cheng;WEN Lu-hong(Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211,China;China Innovation Instrument Co.,Ltd,Ningbo 315100,China)
出处 《无线通信技术》 2021年第3期43-48,52,共7页 Wireless Communication Technology
基金 国家重点研发计划(2018YFC1603504) 浙江省重点研发计划(2020C02023) 宁波市3315创新团队(2017A-17-C)。
关键词 路径规划 渐近最优快速扩展随机树算法 高斯采样 目标概率偏置 path planning asymptotically optimal fast expanding random tree algorithm Gaussian sampling target probability bias
  • 相关文献

参考文献3

二级参考文献9

共引文献20

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部