期刊文献+

碎云环境下GF-4卫星对运动舰船的目标跟踪 被引量:4

A Method for Moving Ship Target Tracking of GF-4 under the Condition of Broken Cloud
下载PDF
导出
摘要 针对"高分四号"(GF-4)卫星可进行连续观测和图像分辨率低的特点,文章提出了一种在碎云条件下用GF-4卫星对运动舰船目标进行检测和跟踪的算法。该算法基于区域候选的卷积神经网络(R-CNN)模型构建思路,首先利用双参数恒虚警率(CFAR)完成候选目标区域提取,以充分利用卷积神经网络(CNN)中LeNet网络在识别简单弱小目标时识别速度快的优势;然后对目标进行静态特征提取和鉴别;最后利用地理航行中的中分纬度法与全局最近邻(GNN)算法相结合进行目标关联和跟踪,形成了目标航迹并获取目标运动信息。文章选取GF-4卫星序列图像对所提算法进行试验,并通过舰船自播报(AIS)信息进行验证,结果显示:该算法能在一定碎云条件下排除碎云目标的干扰,有效地进行运动舰船目标检测与跟踪,具备较强的工程应用价值。 Based on GF-4 satellites’ features of continuous observation and low image resolution characteristics, this paper presents a moving ship target detection and tracking algorithm for GF-4 satellite under the condition of broken cloud. This algorithm refers to the construction idea of convolution neural network(R-CNN) model based on region candidate, and uses double parameter constant false alarm rate(CFAR) to complete candidate target region extraction. In order to make full use of the advantage of LeNet network in convolution neural network(CNN) to identify simple and weak targets, static feature extraction and identification are carried out. Finally, the middle latitude method in geography is combined with the global nearest neighbor(GNN) algorithm to coordinate and track the target track and obtain the target motion information. This paper selects the GF-4 sequence image and the ship self-broadcast newspaper(AIS)information to carry on the experiment verification, proves that the algorithm could eliminate the interference of the broken cloud target under certain cloud condition, and effectively carry on the moving ship target detection and tracking. It has strong engineering application value.
作者 林迅 姚力波 孙炜玮 刘勇 陈进 简涛 LIN Xun;YAO Libo;SUN Weiwei;LIU Yong;CHEN Jin;JIAN Tao(Naval Aviation University,Yantai 264000,China;National Innovation Institute of Defense Technology,Academy of Military Science,Beijing 100071,China;Beijing Institute of Remote Sensing Information,Beijing 100192,China)
出处 《航天返回与遥感》 CSCD 北大核心 2021年第5期127-139,共13页 Spacecraft Recovery & Remote Sensing
基金 国家自然科学基金(91538201,61901504,61971432)。
关键词 运动舰船目标检测 目标跟踪 碎云条件 卷积神经网络 “高分四号”卫星遥感图像 moving ship target detection target tracking broken cloud condition convolution neural network(CNN) GF-4 satellite remote sensing image
  • 相关文献

参考文献3

二级参考文献15

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献158

同被引文献17

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部