期刊文献+

基于机器学习的来水预报多模型对比应用 被引量:3

Multi-model Comparative Application of Inflow Forecasting Based on Machine Learning
下载PDF
导出
摘要 选用俄日河流域玉科、二楷水文站构建断面区间,对区间实测径流过程分析,确定出影响二楷水文站断面流量过程的影响因子,采用基于机器学习线性回归、BP神经网络、K邻近等经典算法,分别构建二楷水文站断面的来水预报模型,并与已建的时变线性汇流模型预报结果及断面实测过程进行对比。对比结果表明,基于机器学习的线性回归和K邻近算法模型预报效果均优于时变线性汇流模型,其中基于机器学习的线性模型整体预测精度最高。 The Yuke and Erkai hydrological stations in the Eri River Basin are selected to construct the sectional interval,and based on the analyzing of runoff process in the interval,the impact factors affecting the cross-sectional flow of Erkai Hydrological Station are determined.Then the classical machine learning algorithms such as linear regression,BP neural network and K proximity are adopted to construct runoff forecasting model of Erkai Hydrological Station,and the forecasting results are compared with the result of established time-varying liner confluence model and the data of actual measured process.The comparison shows that the forecasting results of linear regression and K proximity are better than the time-varying liner confluence model.The overall forecasting accuracy of the linear model based on machine learning is the highest.
作者 陶春华 时焱红 王甫志 TAO Chunhua;SHI Yanhong;WANG Fuzhi(CHN Energy Dadu River Big Data Service Co.,Ltd.,Chengdu 610041,Sichuan,China;Sichuan Xin Neng Project Consulting Co.,Ltd.,Chengdu 610000,Sichuan,China)
出处 《水力发电》 CAS 2021年第11期15-19,共5页 Water Power
关键词 来水预报 机器学习 时变线性汇流模型 线性回归 BP神经网络 K邻近 俄日河流域 inflow forecasting machine learning time-varying liner confluence model linear regression BP neural network K proximity Eri River Basin
  • 相关文献

参考文献12

二级参考文献73

共引文献158

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部