期刊文献+

一种基于图注意力网络的短文本分类方法 被引量:1

A short text classification method based on graph attention network
下载PDF
导出
摘要 针对现有文本分类方法存在的不足,提出了使用图注意力网络进行短文本的分类。首先根据短文本所包含的字和词汇创建一个图结构的数据,然后通过图注意网络赋予同一邻域内各节点不同的权重来减弱噪音数据的影响并且捕获节点间的依赖信息,最后经过最大池化层以生成图级别的语义表示用于类别预测。实验结果表明,该方法相比于CNN、BiLSTM、BiLSTM-MP、FastText、RCNN准确率更高。 To solve the problems with the existing text classification methoods,the method of graph attention networks is proposed for short text classification.First,a graph structure data is created based on the words and vocabulary contained in the short text.Then the graph attention network is used to assign different weights to each node in the same neighborhood to reduce the influence of noisy data and capture the dependency information between nodes.Finally,graph-level semantic representations are generated through the maximum pooling layers for category prediction.Experimental results show that this method achieves better accuracy than CNN,BiLSTM,BiLSTM-MP,FastText,and RCNN.
作者 屈亮亮 侯霞 QU Liangliang;HOU Xia(Computer School,Beijing Information Science&Technology University,Beijing 100101,China)
出处 《北京信息科技大学学报(自然科学版)》 2021年第5期85-90,共6页 Journal of Beijing Information Science and Technology University
关键词 文本分类 图注意力网络 卷积神经网络 双向长短期记忆网络 text classification graph attention network CNN BiLSTM
  • 相关文献

参考文献4

二级参考文献89

  • 1王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 2宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:388
  • 4刘华.基于关键短语的文本分类研究[J].中文信息学报,2007,21(4):34-41. 被引量:14
  • 5Maron M E, Kuhns J L. On relevance, probabilistic indexing and information retrieval[J]. Journal of the ACM (JACM), 1960, 7(3): 216-244.
  • 6Lewis D D. Naive (Bayes) at forty: The independence assumption in information retrieval[C]//Machine learning: ECML-98. Springer Berlin Heidelberg, 1998: 4-15.
  • 7Manning C D, Raghavan P, Schatze H. Introduction to information retrieval[M]. Cambridge: Cambridge university press, 2008.
  • 8Rish I. An empirical study of the naive hayes classifier [J]. IJCAI 2001 workshop on empirical methods in ar- tificial intelligence, 2001, 3(22): 41-46.
  • 9Pinheiro R H W, Cavalcanti G D C, Correa R F, et al. A global-ranking local feature selection method for text categorization[J]. Expert Systems with Appli- cations, 2012, 39(17): 12851-12857.
  • 10Kohavi R, John G H. Wrappers for feature subset se- lection[J].Artificial intelligence,1997,97(1): 273-324.

共引文献142

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部