期刊文献+

Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas 被引量:12

原文传递
导出
摘要 Geohazard recognition and inventory mapping are absolutely the keys to the establishment of reliable susceptibility and hazard maps. However, it has been challenging to implement geohazards recognition and inventory mapping in mountainous areas with complex topography and vegetation cover. Progress in the light detection and ranging(Li DAR) technology provides a new possibility for geohazard recognition in such areas. Specifically, this study aims to evaluate the performances of the Li DAR technology in recognizing geohazard in the mountainous areas of Southwest China through visually analyzing airborne Li DAR DEM derivatives. Quasi-3 D relief image maps are generated based on the sky-view factor(SVF), which makes it feasible to interpret precisely the features of geohazard. A total of 146 geohazards are remotely mapped in the entire 135 km^(2) study area in Danba County, Southwest China, and classified as landslide, rock fall, debris flow based on morphologic characteristics interpreted from SVF visualization maps. Field validation indicate the success rate of Li DAR-derived DEM in recognition and mapping geohazard with higher precision and accuracy. These mapped geohazards lie along both sides of the river, and their spatial distributions are related highly to human engineering activities, such as road excavation and slope cutting. The minimum geohazard that can be recognized in the 0.5 m resolution DEM is about 900 m^(2). Meanwhile, the SVF visualization method is demonstrated to be a great alternative to the classical hillshaded DEM method when it comes to the determination of geomorphological properties of geohazard. Results of this study highlight the importance of Li DAR data for creating complete and accurate geohazard inventories, which can then be used for the production of reliable susceptibility and hazard maps and thus contribute to a better understanding of the movement processes and reducing related losses.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2021年第5期1079-1091,共13页 地球科学学刊(英文版)
基金 The research was supported by the National Innovation Research Group Science Fund(No.41521002) the National Key Research and Development Program of China(No.2018YFC1505202)。
  • 相关文献

参考文献5

二级参考文献43

共引文献172

同被引文献145

引证文献12

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部