摘要
在基于图像识别的驾驶员状态监测任务中,卷积神经网络作为一种十分有效地全局算法,被广泛应用;针对中国汽车驾驶员状态监测问题,提出一种基于卷积神经网络与贝叶斯优化算法结合的驾驶员状态监测方法,该方法数据集采用Kaggle数据集+自建数据集方式建立.算法实现采用迁移学习算法,同时利用贝叶斯优化算法对迁移学习模型进行超参数优化.经过实验验证,采用方法加快了模型优化时间、降低了运算成本,且对驾驶员状态识别问题具有较高准确率.
Convolutional neural network was widely used as a very effective global algorithm in the task of driver status monitoring based on image recognition.To solve the problem of driver status monitoring in China,a driver status monitoring method based on convolution neural network and Bayesian optimization algorithm was proposed.The data set of this method is established by using Kaggle data set and self-built data set.The proposed algorithm adopted migration learning algorithm,and used Bayesian optimization algorithm to optimize the migration learning model.The experimental results show that this method accelerates the model optimization time,reduces the operation cost,and has high accuracy for the state recognition of Chinese automobile drivers.
作者
杨涛
吴波
魏翼鹰
徐劲力
YANG Tao;WU Bo;WEI Yiying;XU Jinli(School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China)
出处
《武汉理工大学学报(交通科学与工程版)》
2021年第5期846-850,共5页
Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金
国家工信部智能制造综合标准化与新模式应用项目(21507707999107)
中央高校基本科研业务费专项项目(2018IVA025)。
关键词
驾驶员状态监测
卷积神经网络
迁移学习
贝叶斯优化
monitoring condition of driver
convolutional neural network
transfer learning
Bayesian optimization