期刊文献+

基于关键数据挖掘的风力发电机组故障预测与诊断技术研究

Research on Fault Prediction and Diagnosis Technology of Wind Turbine Based on Key Data Mining
下载PDF
导出
摘要 随着风电的快速发展,传统的故障检修模式已经影响到了发电效率及设备安全,因此急需根据风力发电机组历史运行情况,结合实际测量的关键数据,预测故障发生的部件和故障发生的时间,提前安排计划检修,提前购置备件。本文通过数据挖掘的方法,使用MATLAB进行建模,能进行风力发电机组的故障预测,可以帮助现场在备件损坏前进行必要维护,将故障引起的损失降到最低。 With the rapid development of wind power,the traditional fault maintenance mode has affected the efficiency of power generation and equipment safety.Therefore,it is urgent to predict the faults based on the historical operation of the wind turbines and the key data of the actual measurements,as well as predict the parts and the time of the failure in order to arrange the maintenance plan and purchase certain equipment in advance.In this paper,the method of data mining,using MATLAB to model,can predict the failure of wind turbine,can help the site in the spare parts before damage necessary maintenance,the loss caused by the failure to the minimum.
作者 陆鹏 彭丹 LU Peng;PENG Dan(Yunnan longyuan wind power Co.,Ltd Yunnan,650000,China)
出处 《风力发电》 2020年第6期26-33,共8页 Wind Power
关键词 风力发电机组 数据挖掘 BP 神经网络 故障诊断 Wind turbine Data mining BP neural network Fault diagnosis
  • 相关文献

参考文献1

二级参考文献4

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部