摘要
为解决视频目标跟踪过程中目标框和预测框边界不重叠情况下无法优化的问题,提出了一种距离交并比(distance intersection over union,DIOU)回归的孪生网络目标跟踪算法.通过孪生网络和区域建议网络(region proposal network,RPN)保持实时效果,将距离交并比引入回归分支,结合重叠率和中心点距离构建损失度量,加快模型训练的收敛速度,为边界框提供更直接的回归方向.同时,使用Resnet50网络替换SiamRPN网络的特征提取网络,进一步提高目标特征表示的准确性.实验结果表明,DIOU回归损失在视频目标尺度变化、低分辨率、光照变化等干扰情况下,具有较强鲁棒性.
In order to solve the problem that the target bounding box and predicted bounding cannot be optimized when the boundary of them do not overlap in the process of visual target tracking,a siamese network target tracking algorithm based on distance intersection over union(DIOU)regression is proposed.The siamese network and regional proposal network(RPN)are used to maintain the real-time effect.The distance intersection over union is introduced into the regression branch,and the loss measurement is constructed in combination with the overlap rate and the center point distance,so as to provide a more direct regression direction for the bounding box and speed up the convergence of the model.At the same time,Resnet50 network is used to replace the feature extraction network in SiamRPN network to further improve the accuracy of target feature representation.Experimental results show that the algorithm has strong robustness under the interference of video target scale change,low resolution and illumination change.
作者
黄智慧
赵慧民
詹瑾
利华康
郑鹏根
郑伟俊
李伟键
黄科乔
HUANG Zhihui;ZHAO Huimin;ZHAN Jin;LI Huakang;ZHENG Penggen;ZHENG Weijun;LI Weijian;HUANG Keqiao(School of Computer Science,Guangdong Polytechnic Normal University,Guangzhou 510630,China;School of Electronics and Communication Engineering,Sun Yat-sen University,Guangzhou 510275,China)
出处
《扬州大学学报(自然科学版)》
CAS
北大核心
2021年第3期48-54,共7页
Journal of Yangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(61772144,61872096)
广东省自然科学基金资助项目(2018A030313546)
广东省教育厅创新团队资助项目(2017KCXTD021)
广东省普通高校重点实验室资助项目(2019KSYS009).
关键词
目标跟踪
距离交并比
孪生网络
深度学习
object tracking
distance intersection over union
siamese network
deep learning