期刊文献+

广义凸多目标规划的最优性

On Optimality of Generalized Convex Multi-objective Programming
下载PDF
导出
摘要 借助Clarke广义梯度以及凸泛函的相关性质,给出了一些新的广义凸函数:广义(C,α)-Ⅰ型凸函数、广义严格拟(C,α)-Ⅰ型凸函数以及广义严格拟伪(C,α)-Ⅰ型凸函数.在新的广义凸性下,得到了一类多目标规划问题的若干最优性充分条件. With the help of the Clarke generalized gradient and the related properties of convexfunctionals, some generalized convex functions have been given: generalized(C,α)-type Ⅰ convex functions, generalized strict quasi-(C,α)-type Ⅰ convex functions, and generalized strict quasi-pseudo-(C,α)-type Ⅰ convex functions. Under these new generalized convexities, some sufficient condition of optimality for a class of multi-objective programming problems have been obtained.
作者 苏紫洋 王荣波 SU Ziyang;WANG Rongbo(Yan'an University School of Mathematics and Computer Science,Yan'an Shaanxi 716000,China)
出处 《西南师范大学学报(自然科学版)》 CAS 2021年第11期1-7,共7页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61861044) 延安大学校级科研项目(YDY2019-17) 延安大学校级创新项目(YCX2020102).
关键词 广义(C α)-I型凸函数 Clarke广义梯度 最优性充分条件 多目标规划 generalized(C,α)-type Ⅰ convex function Clarke generalized gradient optimal sufficient conditions multi-objective programming
  • 相关文献

参考文献6

二级参考文献61

  • 1王荣波,冯强.一类多目标半无限规划的Mond-Weir型对偶[J].浙江大学学报(理学版),2012,39(6):627-629. 被引量:2
  • 2孙永忠,康开龙.非光滑广义F─凸规划问题的充分条件[J].工程数学学报,1996,13(1):117-121. 被引量:11
  • 3张庆祥.非光滑半无限多目标规划弱非控解的充分性[J].高校应用数学学报(A辑),1996,11(4):461-466. 被引量:5
  • 4Loridan P. ε- Solutions in Vector Minimization Problems [J]. Journal of Optimization Theory and Applications, 1984, 43 (2) : 265 -- 276.
  • 5White D J. Epsilon Efficiency [J]. Journal of Optimization Theory and Applications, 1986, 49 (2) : 319 - 337.
  • 6Deng S. On Approximate Solutions in Convex Vector Optimization [J]. SIAM Journal on Control and Optimization, 1997, 35(6) : 2128 - 2136.
  • 7Dutta J, Vetrivel V. On Approximate Minima in Vector Optimization [J]. Numerical Functional Analysis and Optimization, 2001, 22 (7 - 8): 845 - 859.
  • 8Jeyakumar V, Mond B. On Generalized Convex Mathematical Programming [J]. J Austral Math. Soc ser B, 1992, 34 (1): 43--53.
  • 9Clarke F H. Optimalization and Nonsmooth Analysis [M]. New York: John Wiley, 1983.
  • 10Goberna M A and Lopez M A, Linear Semi-Infinite Optimization, Wiley, 1998.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部