摘要
针对深度学习中推荐模型特征组合单一、消解大量有价值特征信息以及过拟合等问题,设计了一种新型的注意力得分机制——注意力胶囊,提出了一种融合注意力胶囊的深度因子分解机模型。基于DeepFM模型,将用户历史点击行为与候选物品进行权重计算,降低了无关特征对模型的影响,充分挖掘了不同历史行为对用户兴趣的差异性影响。训练过程中加入自适应正则化式,在不影响训练速度的前提下,有效地减少了过拟合。在2个公开数据集上进行对比实验,实验结果表明,所提模型相对于其他模型在损失函数和GAUC上均有明显提升。
Aiming at the problems of single feature combination of recommendation model,resolution of a large amount of valuable feature information,and over-fitting in deep learning,a new attentional scoring mechanism called attention capsule was designed,and a deep factorization machine model based on attention capsule was proposed.Users’historical clicking and candidate items were processed through weight calculation based on the DeepFM model,reducing the impact of irrelevant features on the model,and the differential impact of different historical behaviors on users’interests was fully explored.The adaptive regularization formulation was added to the training,which effectively reduced over-fitting without affecting the training speed.The comparison test on two public data sets shows that the proposed model is significantly enhanced in loss function and GAUC compared to other models.
作者
顾亦然
姚朱鹏
杨海根
GU Yiran;YAO Zhupeng;YANG Haigen(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Center of Smart Campus Research,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Center of Wider and Wireless Communication Technology,Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处
《通信学报》
EI
CSCD
北大核心
2021年第10期130-139,共10页
Journal on Communications
基金
国防基础科研基金资助项目(No.JCKY2019210B005,No.JCKY2018204B025,No.JCKY2017204B011)
国防重大工程基金资助项目(No.ZQ2019D20401)
装备发展部仿真预研课题(No.41401030301)。
关键词
推荐模型
深度学习
注意力胶囊
因子分解机
自适应正则化
recommendation model
deep learning
attention capsule
factorization machine
adaptive regularization