期刊文献+

基于EWT-MCKD的机车轮对轴承故障诊断 被引量:4

Fault diagnosis of locomotive wheel set bearing based on EWT-MCKD
下载PDF
导出
摘要 针对机车轮对轴承在实际运行过程中故障特征难以提取的问题,提出经验小波变换(Empirical Wavelet Transform,EWT)和最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)相结合的滚动轴承故障特征提取方法。对原始信号进行傅里叶变换得到Fourier频谱图,根据频谱中的极大值将Fourier频谱图进行分段得到若干模态分量,以无量纲的裕度指标作为评价指标,再采用最大相关峭度解卷积对裕度因子最大的模态分量进行降噪处理。通过分析其包络谱中的频率成分来实现故障诊断。研究结果表明:所提方法对不同故障类型的轮对轴承进行诊断,可以准确有效的识别轮对轴承故障类型,具有一定的工程实用价值。 Aiming at the problem that it is difficult to extract the fault features of train wheel bearings during actual operation,a rolling bearing fault feature extraction method combining empirical wavelet transform(EWT)and maximum correlation kurtosis deconvolution(MCKD)is proposed.First,the Fourier spectrum was obtained by Fourier transform of the original signal,and then the Fourier spectrum was segmented according to the maximal value in the spectrum to obtain a number of modal components,with the dimensionless margin index was used as the evaluation index,and then the maximum correlated kurtosis deconvolution was used to reduce the noise of the modal component with the largest margin factor,and finally the fault diagnosis was realized by analyzing the frequency components in its envelope spectrum.The proposed method was applied to the diagnosis of wheelset bearing with different fault types,and all show that the method can accurately and effectively identify the types of wheelset bearing faults,and has certain engineering practical value.
作者 张龙 闫乐玮 熊国良 胡俊锋 ZHANG Long;YAN Lewei;XIONG Guoliang;HU Junfeng(School of Mechatronics&Vehicle Engineering,East China Jiaotong University,Nanchang 330013,China;Institute of Science and Technology,China Railway Nanchang Group Co.,Nanchang 330013,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第10期2722-2732,共11页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(51665013,51865010) 江西省教育厅科学技术研究项目(GJJ200616)。
关键词 机车轮对轴承 故障诊断 经验小波变换(EWT) 最大相关峭度解卷积(MCKD) 模态分量 裕度指标 locomotive wheel set bearing fault diagnosis empirical wavelet transform(EWT) maximum correlation kurtosis deconvolution(MCKD) modal component margin index
  • 相关文献

参考文献5

二级参考文献38

  • 1王武秀,沈玉娣.应用无量纲幅域参数诊断齿轮箱故障[J].中国设备管理,1996(1):22-24. 被引量:1
  • 2高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 3YEH Poliang,LIU Peiling. Application of the wavelet transform and the enhanced Fourier spectrum in the impact echo test[J]. NDT and E International, 2008,41(5) :382-394.
  • 4LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses [J]. Bulletin of the Seismological Society of America, 2001,91 (5): 1339- 1357.
  • 5GILLES J. Empirical wavelet transform [J]. IEEE Transactions on Signals Processing, 2013, 61 ( 16 ) : 3999-4010.
  • 6GILLES J. TRAN G, OSHER S. 2D empirical transforms, wavelets, ridgelets and curvelets revisited[J]. SIAM Journal on Imagine Sciences, 2014,7 ( 1 ) : 157-186.
  • 7FRANCIS A, MURUGANANTHAM C. empirical wavelet transform and its applieation[J]. International Journal of Electrical, Electronics and Communication Engineering, 2015,1 ( 1 ) : 1-3.
  • 8FRANCIS A, MURUGANANTHAM C. An adaptive denoising method using empirical wavelet transform[J]. International Journal of Computer Applications, 2015,117(21) : 18-20.
  • 9唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报,2008,28(2):77-81. 被引量:32
  • 10熊慧英,何洁,严爱芳.烟气轮机转子不平衡故障诊断研究[J].噪声与振动控制,2008,28(5):86-90. 被引量:4

共引文献72

同被引文献47

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部