摘要
针对铁氧体电感表面裂纹和隐含裂纹的检测,传统机器视觉方法存在裂纹成像模糊,识别率偏低等问题。提出了一种基于激光扫描热成像技术的电感器裂纹检测方法。使用热像仪捕捉样品表面的温度变化,并基于二阶微分算法进行图像合成;使用轮廓提取算法去除外围轮廓的干扰和次大值滤波均匀图像,使用边缘检测对裂纹进行提取;最后利用裂纹的面积和长宽比并结合图像的HOG特征当作输入特征,使用支持向量机进行图像识别。结果表明,对于所有的裂纹都能正确成像,裂纹识别正确率达到98.5%,其性能优于其他检测算法。
For the detection of surface cracks and hidden cracks in ferrite inductor,the traditional machine vision method has some problems,such as fuzzy image and low recognition rate.an inductor crack detection method based on laser scanning thermal imaging technology is proposed.The thermal imager is used to capture the temperature change of the sample surface,and the image is synthesized based on the second-order differential algorithm.The contour extraction algorithm is used to remove the interference of the peripheral contour and filter the uniform image with the second largest value,and the edge detection is used to extract the crack.Finally,using the crack area and aspect ratio and hog features as input features,support vector machine is used for image recognition.The results show that all the cracks can be imaged correctly,and the correct rate of crack recognition is 98.5%,which is better than other detection algorithms.
作者
李涛涛
彭建盛
许恒铭
侯雅茹
LI Taotao;PENG Jiansheng;XU Hengming;HOU Yaru(School of Electrical and Information Engineering,Guangxi University of Science and Technology,Liuzhou 54500,China;School of Artificial Intelligence and Smart Manufacturing,Hechi University,Yizhou 546300,China)
出处
《光学技术》
CAS
CSCD
北大核心
2021年第5期513-518,共6页
Optical Technique
基金
广西科技大学研究生教育创新计划项目(GKYC202105)。
关键词
激光热成像
裂纹检测
自动识别
铁氧体电感器
图像处理
laser thermal imaging
crack detection
automatic identification
ferrite inducto
image processing