期刊文献+

面向多模态遥感影像旋转差异的智能匹配方法 被引量:1

Intelligent matching algorithm for rotation difference between multimodal remote sensing images
下载PDF
导出
摘要 遥感影像配准是图像处理技术领域的重要研究内容,影像间的大旋转差异严重影响匹配精度的提高。针对这个问题,提出基于双分支神经网络的旋转差异校正方法。利用相位一致性信息特征值与方向角提取影像的旋转特征向量(RVPC);构建并训练用于预测影像间旋转差异角的双分支神经网络R-FCN;将RVPC输入网络并预测旋转差异角,最后基于预测角对影像进行仿射校正。R-FCN网络在SEN1-2数据集上,5°(±2.5°)精度训练准确率达98.17%。 Remote sensing image registration is a research of significance in the field of image processing.Large rotation difference between multimodal images seriously affects the improvement of the final quality of image matching.To solve this problem,a rotation difference correction method based on double branch neural network is proposed.Firstly,with the calculation of eigenvalue and orientation of phase congruency information,the rotation feature vector of the image is extracted,named RVPC.After that,a double branch neural network R-FCN is constructed and fully trained to predict the rotation difference angle between images.Furthermore,two RVPC vectors are input into the network and we get an output prediction vector and then calculate the prediction angle.Finally,the image is affine corrected based on the angle.On public data set SEN1-2,the training accuracy of network R-FCN reaches 98.17%.
作者 黄翊航 李泽一 张海涛 吕守业 吴正升 郑美 HUANG Yihang;LI Zeyi;ZHANG Haitao;LV Shouye;WU Zhengsheng;ZHENG Mei(Department of Precision Instruments,Tsinghua University,Beijing 100083,China;Key Laboratory Photonic Control Technology,Ministry of Education,Tsinghua University,Beijing 100083,China;Institute of Remote Sensing,Beijing 100083,China)
出处 《光学技术》 CAS CSCD 北大核心 2021年第5期525-529,共5页 Optical Technique
关键词 多模态遥感影像配准 双分支神经网络 旋转差异 相位一致性 multimodal remote sensing image registration double branch neural network rotation difference phase congruency
  • 相关文献

参考文献4

二级参考文献37

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2杨小冬,宁新宝,詹小四,庄建军.基于纹线跟踪的指纹分类方法[J].计算机工程,2005,31(7):170-173. 被引量:7
  • 3SURI S, REINARTZ P. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas [J].IEEE Transaction Geoscience Remote Sensing, 2010, 48(2): 939–949.
  • 4ZOU Y B, DONG F M, LE B J, et al. Image thresholding based on template matching with arctangent Hausdorff distance measure [J]. Optics and Lasers in Engineering, 2013, 51(5): 600-609.
  • 5BODENSTEINER C, HUEBNER W, JUENGLING K, et al. Local multi-modal image matching based on self-similarity [C]. IEEE International Conference on Image Processing, Hong Kong, 2010: 937-940.
  • 6LOWE D. Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision, 2004, 60(2): 91–110.
  • 7BAY H, TUYTELAARS T. SURF: Speeded Up Robust Features [C]. European Conference on Computer Vision, Graz, Austria, 2006: 404-417.
  • 8ZHAO D, YANG Y, JI ZH H, et al. Rapid multimodality registration based on MM-SURF [J]. Neurocomputing, 2014, 131(5): 87-97.
  • 9WANG ZH H, WU F CH, HU ZH Y. MSLD: A robust descriptor for line matching [J].Pattern Recognition, 2009, 42(5): 941-953.
  • 10PANG G, NEUMANN U. The Gixel Array Descriptor (GAD) for multi-modal image matching [C]. IEEE Workshop on Applications of Computer Vision, Clearwater Beach, USA, 2013: 497-504.

共引文献54

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部