摘要
文章针对一个连续型随机变量被一类可导函数作用之后形成的新随机变量的概率密度公式计算问题,提出了三个定理进行讨论。通过考虑分段严格单调函数在各分段区间内部的反函数及其定义域,利用概率、反函数、严格单调连续函数以及积分变换法等方法给出了证明。进而完善了文献中连续型随机变量函数的概率密度的各种求解公式。
Aimming at the computing problem of the probability density formula for the new random variable produced after a continuous random variable acted on by a class of derivable functions,three theorems are proposed for discussion.By considering the inverse function and its definition domain of piecewise strict monotone function within each piecewise interval,the proof is given by using the methods of probability,inverse function,strict monotone continuous function,integral transformation method.Furthermore,various solving formulas for the probability density of continuous random variable function in the literature are improved.
作者
曾小林
ZENG Xiaolin(College of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China)
出处
《现代信息科技》
2021年第11期132-135,共4页
Modern Information Technology
基金
重庆市教委科技项目(KJQN202000838)
重庆工商大学校内预研项目(2019ZKYYA111)。
关键词
连续型随机变量
随机变量函数
概率密度
分段严格单调函数
continuous random variable
random variable function
probability density
piecewise strict monotone function