期刊文献+

Optimisation Method for Determination of Crack Tip Position Based on Gauss-Newton Iterative Technique 被引量:1

下载PDF
导出
摘要 In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life prediction.This paper proposes a Gauss-Newton iteration method for solving the crack tip position.The conventional linear fitting method provides an iterative initial solution for this method,and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix.A noise-added artificial displacement field is used to verify the feasibility of the method,which shows that all parameters can be solved with satisfactory results.The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result,and the relative error between the two is only−0.621%;The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip,and the maximum relative error with the test plastic zone area is−11.29%.The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%.The crack tip coordinates,stress intensity factors,and plastic zone contour changes in the loading and unloading phases are explored.The results show that the crack tip change during the loading process is faster than the change during the unloading process;the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process;under the same load,the theoretical plastic zone during the unloading process is higher than that during the loading process.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期196-207,共12页 中国机械工程学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.51675446) Independent Research Project of State Key Laboratory of Traction Power(Grant No.2019TPL-T13).
  • 相关文献

参考文献3

二级参考文献16

  • 1余圣甫,王铁琦,杨其良,沈满德.ZG20MnSi钢断裂韧度和疲劳裂纹扩展速率试验研究[J].机械工程材料,2005,29(6):17-19. 被引量:5
  • 2解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.18-20.
  • 3原航空工业部第三零-研究所.航空发动机结构完整性指南GJB/Z101-97[S].北京:[出版者不详],1997:36-44.
  • 4吕文林,陈俊粤,田德义.航空涡喷、涡扇发动机结构设计准则(研究报告)第二册:轮盘[R].北京:中国航空工业总公司发动机系统工程局,1997.
  • 5NEWMAN J C. Stress analysis of compact specimens including the effects of pin foading[J].ASTM STP, 1974,560 : 105 -105.
  • 6SRAWLEY ,I E. Wide range stress intensity factor expressions for ASTM method E399 standard fracture toughness specimens[J]. International Journal of Fracture, 1976,12(3): 475-476.
  • 7GARCIA-MANRIQUE J, CAMAS D, LOPEZ CRESPO P, et al. Stress intensity factor analysis of through thickness effects [J]. International Journal of Fatigue, 2013, 46: 58-66.
  • 8BAZANT Z P, ESTENSSORO L F. Surface singularity and crack propagation [J]. International Journal of Solids and Structures, 1979, 15(5): 405 -426.
  • 9TOWERS O L, SMITH A P. Stress intensity factors for curved crack fronts in compact tension specimens [J]. International Journal of Fracture, 1984, 25(2):43-48.
  • 10NEWMAN J C, YAMADA Y, JAMES M A. Stress intensity-factor equations for compact specimen subjected toconcentrated forces [J]. Engineering Fracture Mechanics, 2010, 77(6): 1025- 1029.

共引文献7

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部