期刊文献+

基于肌音信号图像化和卷积神经网络的手语识别研究 被引量:2

Sign Language Recognition Based on Image-interpreted Mechanomyography and Convolution Neural Network
下载PDF
导出
摘要 时间序列信号被广泛应用于各种模式识别的场合,针对大量目标的时间序列信号模式识别率低的问题,借助多种图像化手段,将时间序列信号转换为图像,采用图像分类算法实现模式识别。实验中采集了前臂上30种手语对应的肌音信号(Mechanomyography,MMG),将其转换为不同风格的图像,设计卷积神经网络(Convolution Neural Network,CNN)框架,对图像化的肌音信号训练集建立模式识别的分类模型,并且应用迁移学习(transfer learning)算法对模型进行多次优化,建立的分类模型识别率达98.7%,高于普通机器学习算法的识别率。实验结果证明了图像化处理时间序列信号可以有效提高多分类肌音信号模式识别的识别率,该研究可以为其他时间序列信号的模式识别研究提供参考。 Time series signals are widely used in various pattern recognition applications.In order to solve the problem of low pattern recognition rate of time series signals for a large number of targets,this article uses a variety of transform methods to convert time series signals into images,and performes pattern recognition using image classification algorithms.In the experiment,the mechanomyography(MMG)corresponding to 30 sign languages on the forearm are collected and converted into different image styles,and a convolution neural network(CNN)framework is designed to establish pattern recognition classification models for the images.The models are optimized twice with the application of transfer learning algorithm,and the recognition rate of the best classification model reaches 98.7%,which is much higher than the recognition rate of traditional machine learning algorithms.The experimental results imply that the image processing of time series signals can effectively improve the recognition rate of multi-target pattern recognition of MMG.This paper can provide references for pattern recognition of other time series signal.
作者 王新平 夏春明 颜建军 WANG Xin-ping;XIA Chun-ming;YAN Jian-jun(School of Mechinery and Power Eningeering,East China University of Science and Technology,Shanghai 200237,China)
出处 《计算机科学》 CSCD 北大核心 2021年第11期242-249,共8页 Computer Science
关键词 肌音信号 模式识别 时间序列图像化 卷积神经网络 迁移学习 Mechanomyography Pattern recognition Image-interpreted time series signal Convolution neural network Transfer learning
  • 相关文献

参考文献5

二级参考文献25

共引文献39

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部