期刊文献+

基于改进PGA-PSO的多无人机协同雷达侦察任务分配 被引量:1

Multi-UAVs Cooperative Radar Reconnaissance Task Assignment Based on Improved PGA-PSO
下载PDF
导出
摘要 文章研究多无人机协同侦察相控阵雷达模式转移规律过程中的任务分配优化。为了以最小能耗无重复侦察雷达全部波位,根据相控阵雷达波位覆盖方式,分析比较了三种波位侦察点选择方案。在此基础上,根据侦察点访问约束、无人机航程和能耗约束,以无人机总能耗最低为目标,建立多无人机侦察任务分配的多旅行商优化模型。基于单亲遗传一粒子群混合算法(PGA-PSO),使用分组最优个体选择和多变异操作,保证算法快速收敛的同时,提高算法求解精度。仿真结果表明,通过优选侦察点和优化任务分配可大幅提高多无人机协同的侦察效率,及进的PGA-PSO算法较其他算法求解精度高,收敛速度快。 This paper studies the optimization of task assignment in the process of multi-UAVs reconnoitring the mode transfer rule of a phased array radar cooperatively.According to the beam position coverage method of a phased array radar,three schemes of beam position reconnaissance point selection are analyzed and compared in order to reconnoitre entire beam positions of the radar with minimum energy consumption without repetition.On this basis,based on the access constraints of reconnaissance points,UAV range and energy consumption constraints,a multi-traveling salesmen optimization model for multi-UAVs reconnaissance task assignment is established with the goal of minimizing the total energy consumption of UAVs.Based on partheno genetic-particle swarm optimization algorithm(PGA-PSO),grouping optimal individual selection and multiple mutation operation are used to ensure the fast convergence of the algorithm and improve the accuracy of the algorithm.The simulation results show that the efficiency of multi-UAVs cooperative reconnaissance can be greatly improved by optimizing reconnaissance points and task assignment.The improved PGA-PSO algorithm has higher solution accuracy and faster convergence speed than other algorithms.
出处 《大众科技》 2021年第9期1-6,共6页 Popular Science & Technology
关键词 多无人机 雷达侦察 任务分配 单亲遗传算法 粒子群优化 multi-UAVs radar reconnaissance task assignment partheno genetic algorithm particle swarm optimization
  • 相关文献

参考文献6

二级参考文献51

  • 1李大社,裴楠楠.利用激光对无人机进行侦察的可行性探索[J].光电技术应用,2004,19(4):7-9. 被引量:1
  • 2李文臣,刘付兵,袁翔宇,陈江伟.地基相控阵雷达的天线扫描空间分析[J].雷达科学与技术,2004,2(5):309-314. 被引量:9
  • 3卡里拉斯P J.电扫描雷达系统设计手册[M].北京:国防工业出版社,1979.
  • 4KENZO N. Prospect and recent research and development for civil use autonomous unmanned aircraft as UAV and MAV [J]. Journal of System Design and Dynamics, 2007, 1(2): 120-128.
  • 5HUTCHISON M G. A method for estimating range requirements of tactical UAVs [C]// Proceedings of AIAA's 1st Technical Conference and Workshop on Unmanned Aerospace Vehicles. Virginia: AIAA, 2002: 1-12.
  • 6TIAN Jing, SHEN Lin-cheng, ZHENG Yan-xing. Genetic algorithm based approach for multi-UAV cooperative mlsslon planning problem [C]// International Symposium on Methodologies for Intelligent Systems. Berlin: Springer, 2006:101-110.
  • 7YAN Qin-yu, PENG Zhong-ren, CHANG Yun-tao. Unmanned aerial vehicle cruise route optimization model for sparse road network [C]//Transportation Research Board of the National Academies, Washington D C: National Research Council, 2011: 432-445.
  • 8WANG Zhen-hua, ZHANG Wei-guo, SHI Jing-ping, HAN Yin. UAV route planning using multiobjective ant colony system [C]// IEEE Conference on Cybernetics and Intelligent Systems, Chengdu: IEEE, 2008: 797-800.
  • 9SRINIVAS N, DEB K. Multi-objective optimization using nondominated sorting in genetic algorithms [J]. Evolutionary Computation, 1994, 2(3): 221-248.
  • 10FONSECA C M, FLEMING P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization [C]// Proceedings of the Fifth International Conference on Genetic Algorithms. San Mateo: Morgan Kaufmarm Publishers, 1993: 416-423.

共引文献99

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部