期刊文献+

双金属Co/Pd纳米催化剂催化乙炔双羰化反应的性能研究 被引量:1

Access to Highly Active Co/Pd Bimetallic Nanoparticle Catalysts for Acetylene Dicarbonylation Reactions
下载PDF
导出
摘要 采用一步还原法制备了一系列双金属纳米Pd基合金催化剂,以获得优秀的乙炔双羰化反应催化剂。利用透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、X-射线衍射(XRD)、原位红外光谱(In-situ IR)等手段对催化剂的性质进行了研究。考察了掺杂金属、溶剂、助剂种类及用量、一氧化碳压力、温度对反应产率的影响。结果表明:以乙腈为溶剂,乙炔、一氧化碳和甲醇为原料合成丁烯二酸二甲酯,Co/Pd双金属纳米催化剂的活性最高,在低温低压条件下丁烯二酸二甲酯的总产率可达97.99%。Co元素的引入,有助于降低Pd对一氧化碳吸附强度,使更多的吸附于催化剂表面的CO分子能参与反应,提高了Pd基纳米双金属催化剂催化乙炔双羰化反应的活性。 A series of bimetallic nano Pd-based alloy catalysts were prepared by one-step reduction method and used to obtain excellent catalysts for acetylene dicarbonylation reactions.The transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),and in situ infrared spectroscopy(In-situ IR)were used to investigate the composition and structure of Co/Pd catalysts.The effects of doping metal,solvent,type and dosage of promoter,carbon monoxide pressure and temperature on the reaction yield were investigated.The results show that the Co/Pd bimetallic nano-catalysts have excellent catalytic activity in the reaction of acetonitrile,acetylene,carbon monoxide,and methanol,and the total yield of acetylene dicarbonylation can reach 97.99%at low temperature and low pressure.The introduction of Co reduces the chemisorption strength of CO chemisorption on Pd,so that more CO molecules adsorbed on the catalyst surface can participate in the reaction,and the Pd-based nano-catalysts catalytic activity for acetylene dicarbonylation are improved.
作者 赵晶璨 杨启亮 张雨晨 罗迎春 王环江 ZHAO Jing-can;YANG Qi-liang;ZHANG yu-chen;LUO Ying-chun;WANG Huan-jiang(School of Chemical Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处 《化学试剂》 CAS 北大核心 2021年第11期1473-1479,共7页 Chemical Reagents
基金 贵州省科学技术基金项目([2019]1158) 贵州省青年科技人才成长资助项目(KY[2018]149)。
关键词 Pd基双金属 纳米合金催化剂 乙炔双羰化 助剂 反应机理 Pd-based bimetal nano-alloy catalyst acetylene dicarbonylation reaction promoter reaction mechanism
  • 相关文献

参考文献4

二级参考文献41

  • 1刘蕊,熊绪茂,慕新元,马占伟,宋承立,胡斌.羰基铁催化乙炔羰化合成丙烯酸甲酯的研究[J].分子催化,2015,29(2):97-102. 被引量:5
  • 2K. A. Kuttiyiel, Y. M. Choi, S. M. Hwang, G. G. Park, T. H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, Nano Energy, 2015, 13, 442-449.
  • 3X. C. Wang, X. R. Liu, Y. Xu, G. M. Peng, Q. Cao, X. D. Mu, Chin. J. Catal., 2015, 36, 1614-1622.
  • 4J. C. Zhang, J. X. Guo, W. Liu, S. P. Wang, A. R. Xie, X. F. Liu, J. Wang, Y. Z. Yang, Eur. J. Inorg. Chem., 2015, 2015, 969-976.
  • 5C. Domínguez, F. J. Pérez-Alonso, M. Abdel Salam, J. L. G. de la Fuente, S. A. Al-Thabaiti, S. N. Basahel, M. A. Pe?a, J. L. G. Fierro, S. Rojas, Int. J. Hydrogen Energy, 2014, 39, 5309-5318.
  • 6H. Y. Jin, J. Wang, D. F. Su, Z. F. Wei, Z. F. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
  • 7R. V. Jagadeesh, H. Junge, M. M. Pohl, J. Radnik, A. Brückner, M. Beller, J. Am. Chem. Soc., 2013, 135, 10776-10782.
  • 8I. Matanovic, S. Babanova, A. Perry III, A. Serov, K. Artyushkovaa, P. Atanassov, Phys. Chem. Chem. Phys., 2015, 17, 13235-13244.
  • 9J. Masa, W. Xia, I. Sinev, A. Q. Zhao, Z. Y. Sun, S. Grutzke, P. Weide, M. Muhler, W. Schuhmann, Angew. Chem. Int. Ed., 2014, 53, 8508-8512.
  • 10R. Othman, A. L. Dicks, Z. H. Zhu, Int. J. Hydrogen Energy, 2012, 37, 357-372.

共引文献23

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部