期刊文献+

M-矩阵最小特征值下界的估计

Estimation of Lower Bound of Minimum Eigenvalue of M-matrix
下载PDF
导出
摘要 研究M-矩阵最小特征值的下界估计问题,在利用两个带有参数的圆盘定理的基础上,结合不等式的适当放缩,首先给出了非负矩阵与M矩阵的逆矩阵的Hadamard积的谱半径的上界,其次给出了M-矩阵最小特征值下界的一些估计式的新的结果,一方面是对该类问题研究的扩充,另一方面,仅与矩阵的元素有关,计算起来较为方便。 In this paper,we study the lower bound estimation of the minimum eigenvalue of M-matrix.On the basis of two disk theorems with parameters,appropriate expansion and reduction of combined inequality,the upper bound of spectral radius of Hadamard product of inverse matrix of nonnegative matrix and M matrix is given,and then some estimates of the lower bound of the minimum eigenvalue of M-matrix are given.The new results,on the one hand,extend the study of this kind of problems;on the other hand,they are only related to the elements of matrices,so they are more convenient to calculate.
作者 李艳艳 LI Yanyan(School of Artificial Intelligence,Wenshan University,Wenshan Yunnan 663099,China)
出处 《保山学院学报》 2021年第5期42-46,共5页 JOURNAL OF BAOSHAN UNIVERSITY
基金 云南省教育厅科学研究基金项目“两类特殊矩阵特征值界的估计”(项目编号:2021J0759)。
关键词 M-矩阵 最小特征值 不等式 M-matrix Minimum eigenvalue Inequality
  • 相关文献

参考文献6

二级参考文献21

  • 1章伟,黄廷祝.不可约M-矩阵最小特征值的估计[J].工程数学学报,2004,21(F12):31-34. 被引量:10
  • 2Shivakumar P N, Williams J J, Ye Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J]. SIAM J Ma- trix Anal Appl, 1996,17:298-312.
  • 3Tian G X, Huang T Z. Inequalities for the minimum eigen- value of M-matrices[J]. Electron J Linear Algebra, 2010, 20:291-302.
  • 4Li C Q,Li Y T, Zhao R J. New inequalities for the mini- mum eigenvalue of M-matrices[J]. Linear Multilinear A, 2013,61 (9) : 1267-1279.
  • 5Xu M,Li S H,Li C Q. Inequalities for the minimum eigen- value of doubly strictly diagonally dominant M-matrices [J]. J Appl Mathe,2014,2014:1-8.
  • 6Varga R S. Gerscgorin and his circles[M]. Berlin: Springer- Verlag, 2004.
  • 7Horn R A,Johnson C R. Topics in matrix analysis[M]. Cambridge : Cambridge University Press, 1985.
  • 8Cben F B. New inequalities for the Hadamard product of an M-matrix and its inverse[J]. J Inequal Appl, 2015,35: 1- 12.
  • 9李艳艳,李耀堂.矩阵Hadamard积和Fan积的特征值界的估计[J].云南大学学报(自然科学版),2010,32(2):125-129. 被引量:20
  • 10周平,李耀堂.非负矩阵Hadamard积和M-矩阵Fan积的特征值界的估计[J].纯粹数学与应用数学,2012,28(6):826-833. 被引量:6

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部