期刊文献+

基于卷积评价及对抗网络的花粉、孢子图像增广算法 被引量:1

Augmented algorithm for pollen and spore images based on convolution evaluation and pix2pix network
下载PDF
导出
摘要 针对花粉、孢子图像特征复杂,样本稀缺及种类繁多制约图像检测识别效果的问题,建立基于自适应阈值分割的pix2pix图像增广模型。首先基于卷积评价改进自适应阈值分割算法,择优选取语义分割图像;其次构建pix2pix图像增广模型,将语义分割图像和原始图像建立标签映射用于模型训练,根据语义分割图像生成仿真图像,扩充样本数据集。结果表明,以149种花粉、孢子图像为样本,通过图像增广模型生成的花粉、孢子图像整体相似度达到85.40%;图像增广前Faster RCNN、YOLOv3检测模型的检测精准率分别为86.18%、85.64%,使用增广后的样本训练模型,检测精准率分别达到92.16%、90.57%,提升5.98个百分点和4.93个百分点。 Aiming at the problems such as complex image features of pollens and spores,scarcity of image samples,restricted detection and recognition effects of various images of pollens and spores,a pix2pix image augmentation model based on adaptive threshold segmentation was built.Firstly,the adaptive threshold segmentation algorithm was improved based on convolution evaluation to select the optimal semantic segmentation images of pollens and spores.Secondly,the pix2pix image augmentation model was constructed,the semantic segmentation images and the original images were used to establish label mapping for model training,and emulational pollen and spore images were generated based on semantic segmentation images to extend sample dataset.The results showed that,the overall similarity of 149 pollen and spore images generated by the image augmentation model reached 85.40%.Before image enlargement,the detection accuracies of Faster RCNN and YOLOv3 detection models were 86.18%and 85.64%,respectively.After using the enlarged sample training model,the accuracies reached 92.16%and 90.57%,which increased by 5.98 and 4.93 percentages.
作者 王万亮 江高飞 严江伟 薛卫 WANG Wan-liang;JIANG Gao-fei;YAN Jiang-wei;XUE Wei(School of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210095,China;College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China;School of Forensic Medicine,Shanxi Medical University,Taiyuan 030001,China)
出处 《江苏农业学报》 CSCD 北大核心 2021年第5期1190-1198,共9页 Jiangsu Journal of Agricultural Sciences
基金 国家自然科学基金重点研发计划项目(2017YFD0800204)。
关键词 花粉检测 图像增广 图像分割 pix2pix网络 pollen detection image augmentation image segmentation pix2pix network
  • 相关文献

参考文献6

二级参考文献38

共引文献22

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部