期刊文献+

基于长度信息和深度卷积神经网络分类建模的蛋白质二级结构预测方法

PROTEIN SECONDARY STRUCTURE PREDICTION METHOD BASED ON LENGTH INFORMATION AND DEEP CONVOLUTIONAL NEURAL NETWORK CLASSIFICATION MODELING
下载PDF
导出
摘要 提出基于蛋白质长度信息和深度卷积神经网络分类建模的方法(Length Information and Deep Convolutional Neural Networks, LIM-DCNN),实现对于蛋白质二级结构的预测。实验得到的6分段模型,预测CASP9、CASP10、CASP11、CASP12和CB513的Q3准确率分别为83.67%、78.99%、78.53%、71.52%和85.94%,说明了基于蛋白质长度分类建模的有效性,并且实验得到的CB513结果明显优于其他许多经典的预测算法。 This paper proposes a method based on protein length information and deep convolutional neural network(LIM-DCNN) classification modeling to predict the secondary structure of proteins. The 6-segment model obtained by the experiments predicts Q3 accuracy rates of CASP9, CASP10, CASP11, CASP12, and CB513 of 83.67%, 78.99%, 78.53%, 71.52%, and 85.94% respectively. The experiment proves the validity of classification based on protein length, and the CB513 result obtained by the experiment is obviously better than many other classic prediction algorithms.
作者 朱树平 刘毅慧 Zhu Shuping;Liu Yihui(School of Computer Science and Technology,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,Shandong,China)
出处 《计算机应用与软件》 北大核心 2021年第11期56-63,173,共9页 Computer Applications and Software
基金 国家自然科学基金项目(61375013) 山东省自然科学基金项目(ZR2013FM020)。
关键词 蛋白质二级结构 长度信息 深度卷积 大数据 预测 Protein secondary structure Length information Deep Convolution Big data Prediction
  • 相关文献

参考文献2

二级参考文献13

  • 1LIN Y-Y. Multiple kernel learning for dimensionality reduction [ J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(6):1147 -1160.
  • 2COSTANTINI S. Amino acid propensities for secondary structuresare influenced by the protein structural class [ J]. Biochemical andBiophysical Research Communications, 2006,342(2) :441 -451.
  • 3COSTANTINI S. PreSS A Pro: A software for the prediction of sec-ondary structure by amino acid properties [ J]. Computational Biolo-gy and Chemistry, 2007,31(5/6):389-392.
  • 4WARD J J. Secondary structure prediction with support vector ma-chines [J]. Bioinformatics, 2003,19( 13): 1650 -1655.
  • 5MESHK3N A. Predicti(xi relative solvent accessibility by support vectorregression and best-first method [J]. EXCIi Journal, 2010, 9:29-38.
  • 6LI D P. A novel structural position-specific scoring matrix for theprediction of protein secondary structures [ J ], Bioinformatics,2012, 28(1):32-39.
  • 7维基百科.DSSP(protein) [ EB/OL]. [2012-09-09]. http://en.wikipedia. org/wiki/DSSP_( protein).
  • 8BHAGWAT M,ARAVIND L . Comparative Genomics [ M ].Totowa: Humana Press, 2007.
  • 9ANDERSEN C . Continuum secondary structure capturesprotein flexibility [ J]. Structure, 2002, 10(2): 175 - 184.
  • 10BEN-HUR A, NOBLE W S. Kernel methods for predicting protein-protein interactions [ J]. Bioinformatics, 2005, 21( 1): 38 -46.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部