期刊文献+

基于深度学习的口腔鳞癌的诊断与分割方法

DIAGNOSIS AND SEGMENTATION METHODS OF ORAL SQUAMOUS CELL CARCINOMA BASED ON DEEP LEARNING
下载PDF
导出
摘要 针对实际应用中要对图片分类并对癌变图进行癌变区域定位的需求,收集天津市口腔医院典型病例,建立口腔细胞病理切片图像数据集,提出基于深度学习的诊断与分割方法。采用以DenseNet为架构的卷积神经网络对图像进行正常与癌变的分类,利用图像分块思想对高分辨率图像分块进行训练,采用迁移学习和数据增强方法减少过拟合问题的发生。分类完成后,使用以DenseNet网络作为编码结构的UNet++分割网络对判断为癌变的图像进行癌变区域定位,采用组合交叉熵方法确定损失函数进行调优。实验表明,该方法能够较好地完成口腔细胞切片图像的分类识别,识别准确率达98.46%,与金标准对比,得到了较理想的分割结果。该方法有助于口腔细胞病理自动诊断系统的开发,可用于口腔鳞癌病理辅助诊断。 In view of the need to classify images and locate the cancerous region of cancerous images in practical applications, the typical cases of Tianjin Stomatology Hospital were collected, the image data set of oral cell pathology slices was established, and the diagnosis and segmentation method based on deep learning was proposed. The convolutional neural network based on DenseNet was used to classify the images into normal and canceration, and the high-resolution images were divided into patches, and the migration learning and data enhancement methods were used to reduce the occurrence of overfitting. After the classification, the UNet++ segmentation network with DenseNet network as the coding structure was used to locate the cancerous area of the image, and the combined cross entropy method was used to determine the loss function for tuning. The experimental results show that this method can complete the classification and recognition of oral cell slice images with a recognition accuracy of 98.46%, compared with the gold standard, a better segmentation result was obtained. This method is helpful for the development of automatic pathological diagnosis system of oral cell pathological and can be used for the auxiliary diagnosis of oral squamous cell carcinoma.
作者 李练兵 芮莹莹 尚建伟 李政宇 李铎 Li Lianbing;Rui Yingying;Shang Jianwei;Li Zhengyu;Li Duo(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;Department of Oral Pathology,Tianjin Stomatology Hospital,Tianjin 300041,China)
出处 《计算机应用与软件》 北大核心 2021年第11期219-225,共7页 Computer Applications and Software
关键词 鳞状上皮细胞癌 病理切片 深度学习 图像识别 Oral squamous cell carcinoma Pathological slices Deep learning Image recognition
  • 相关文献

参考文献5

二级参考文献18

  • 1Keating JT,Cviko A,Riethdorf S,et al.Ki-67,cyclinE1,and P16INK4 are complimentary surogate biomarkers for human papilloma virus-related cervical neoplasia[ J].Am J Surg Pathol,2001,25(7):884
  • 2Serrano M,Hannon GL,Beach D.A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4[J].Natur,1993,366 (6456):704
  • 3Ito R,Yasui W,Ogawa Y,et al.Reduced expression of cyclin-dependent kinase inhibitor p27 (Kip1) in oral malignant tumors[ J ].Pathobiol,1999,67(4):169
  • 4Saito T,Nakajima T,Mogi K.Immumohistochemical analysis of cell cycle-associated proteins p16,pRb p53,p27 and Ki-67 in oral cancer and percancer with special reference to verrucous carcinomas[J].J oral Pathol Med,1999,28(5):226
  • 5Ichikawa M,Iahii K,Nakajima T,et al.The overexpression of p53 and proliferative activity in prelancerous and cancerous lesions of oral squamous epithelium[J].J Exp Clin cancer Res,1997,16(2):141
  • 6Porter PL,Caown AM,Kramp SG,et al.Wideapread p53 overexpression in human malignant tumors[ J ].Am J Pathol,1992,140(1):145
  • 7刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:143
  • 8吴一全,殷骏,戴一冕,袁永明.基于蜂群优化多核支持向量机的淡水鱼种类识别[J].农业工程学报,2014,30(16):312-319. 被引量:44
  • 9杜伟东,李海森,魏玉阔,徐超.基于SVM的决策融合鱼类识别方法[J].哈尔滨工程大学学报,2015,36(5):623-627. 被引量:14
  • 10许枫,张乔,张纯,苏瑞文.Walsh变换对鱼类特征识别的研究[J].应用声学,2015,34(5):465-470. 被引量:5

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部