期刊文献+

社交电商中融合信任和声誉的图神经网络推荐研究 被引量:9

A Graph Neural Network Recommendation Study Combining Trust and Reputation in Social E-commerce
原文传递
导出
摘要 社交电商可依据用户间的社交关系为用户提供感兴趣的商品或服务。现有研究多基于社会信任或社会声誉进行推荐,却忽略了信任与声誉间的相互作用,导致推荐效果欠理想。针对以上问题,本文提出了一种融合信任(Trust)和社会声誉(Social Reputation)的图神经网络推荐算法(TSR-GM),采用社会声誉来深度刻画用户关系在推荐系统中的作用,利用社交网络中用户被信任程度对用户声誉进行排名,以图神经网络量化整合用户信任与声誉,并将结合后的新矩阵不断校正以获取更准确的用户信任,以此对矩阵分解后得到的新评分模型更新,最终得到更准确度量的预测评分矩阵。运用Epinions数据集开展的相关实验表明:与同类方法比,TSR-GM算法对提高推荐精度有较好效果。 Amid rapid development of social network,growing number of users leads to excessive information,challenging the beneficiaries in theory to filter the valuable bits.One question raised along this,which requires users to identify trustworthy content,presents researchers with the idea of studying the role of which trust relations among users play in social e-commerce.Some exploring in this field sees a connection between item ratings and trust relations of users,however,there often lacks integrity in reliable trust relation data,and even those that doesn’t show great disparity.Hence,a method to identify content and information that users trusted more swiftly and precisely is still in great demand.Also,researchers show increasing interest in the position that user reputation played in effecting user trust and how to merge those two to offer more satisfying recommendation.This paper,which focuses on uncertainty in complexity displayed by user trust relationships,with the goal of improving overall performance of recommendation,presents TSR-GM fusing user trust relations and social reputation.Firstly,TSR-GM implements social reputation to depict impact of user relations on recommendation systems,raking social reputation regarding trust level of a user in social network;sequentially,merges user trust and reputation with Graph Neural Networks,adjusting with combined matrix to obtain more precise user trust level;additionally,the proposed method updates rating model with factorized matrix,and acquires final rating prediction matrix.Experiments are run on Epinions dataset,and results showed a gain in prediction gain comparing to other 5 methods in this field,especially on RMSE and MAE.The proposed method,which implements Graph Neural Network,recommends user interested content fusing trust relations and reputation in social e-commerce,effectively improved accuracy in predicting user behavior.Research result,with an aim in user satisfaction,provides theoretical support in decision making process of e-commerce platform and corporates.
作者 胡春华 邓奥 童小芹 缪和 王宗润 HU Chun-hua;DENG Ao;TONG Xiao-qin;MIAO He;WANG Zong-run(Research Institute of Big Data and Internet Innovation,Hunan Technology and Business University,Changsha 410205,China;Key Laboratory of Hunan Province for Mobile Business Intelligence,Changsha 410205,China;School Business,Central South University,Changsha 410083,China)
出处 《中国管理科学》 CSSCI CSCD 北大核心 2021年第10期202-212,共11页 Chinese Journal of Management Science
基金 国家自然科学基金面上资助项目(72072053) 国家自然科学基金重大资助项目(72091515) 湖南创新型省份建设专项(2019GK2131)。
关键词 信任关系 社会声誉 图神经网络 社交电商 推荐系统 trust relationship social reputation graph neural network social commerce recommendation system
  • 相关文献

参考文献5

二级参考文献62

  • 1宋国峰,梁昌勇.一种基于用户行为信任的云安全访问控制模型[J].中国管理科学,2013,21(S2):669-676. 被引量:16
  • 2陈冬林,聂规划,刘平峰.基于网页语义相似性的商品隐性评分算法[J].系统工程理论与实践,2006,26(11):98-102. 被引量:8
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:193
  • 4Linden G, Smith B, York J. Amazon.corn recommendations: Item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 5Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations[J]. Information Sciences, 2010, 180(11): 2142-2155.
  • 6Shinde S K, Kulkarni U. Hybrid personalized recommender system using centering-bunching based clustering algorithm[J]. Expert Systems with Applications, 2012, 39(1): 1381-1387.
  • 7Adomavicius G, Sankaranarayanan R, Sen S, et al. Incorporating contextual information in recommender systems using a multidimensional approach[J]. ACM Transactions on Information Systems, 2005, 23(1): 103-145.
  • 8Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering[C]//Proceedings of the SIAM Data Mining Conference (SDM'05), Newport Beach, CA, 2005.
  • 9Ahn H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J]. Information Sciences, 2008, 178(1): 37-51.
  • 10Kim H N, EI-Saddik A, Jo G S. Collaborative error-reflected models for cold-start recommender systems[J]. Decision Support Systems, 2011, 51(3): 519-531.

共引文献89

同被引文献147

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部