摘要
研究一类无(AR)条件的Klein-Gordon-Maxwell系统解的多重性.当凹项是次线性增长且凸项满足一般超线性增长但无(AR)条件时,利用变分方法获得了系统解的多重性结果.推广和完善了此系统解的存在性的已有结果.
In this paper,we establish the multiplicity of solutions for a class of Klein-Gordon-Maxwell system without(AR)condition when the potential is allowed to be signchanging.When the concave term has sublinear growth and the convex term hasgeneral superlinear growth without(AR)condition,the multiplicity result of nontrivial solutions for the system are obtained via variational methods.Our results generalize and improve the recent result in the literature.
作者
段誉
孙歆
DUAN Yu;SUN Xin(College of Science,Guizhou University of Engineering Science,Bijie 551700,China)
出处
《数学的实践与认识》
2021年第20期212-220,共9页
Mathematics in Practice and Theory
基金
国家自然科学基金(11661021)
贵州省普通高等学校科技拔尖人才项目(黔教合KY字[2019]065)
贵州省教育厅青年科技人才成长项目(KY[2020]144)。