期刊文献+

基于准确性和多样性的在线动态选择集成建模方法

Ensemble Modeling Method of Online Dynamic Selection Based on Accuracy and Diversity
下载PDF
导出
摘要 为了解决复杂工业过程中的概念漂移问题,提高集成学习模型的泛化性能,在保证集成学习模型精度的基础上,提出了一种用于优化多样性的基学习器在线动态选择集成建模方法.该方法以在线极限学习机作为基学习器,按照基学习器在滑动窗口上的分类精度对其进行逆序排序,将基学习器在滑动窗口上的其他性能指标作为特征属性,依次利用近似线性依靠条件挑选出准确且多样的基学习器用于集成输出,提高了集成学习模型在处理概念漂移数据流时的分类精度.最后,使用合成数据集和公开数据集验证了所提算法的合理性与有效性. To solve the problem of concept drift in complex industrial process and to improve the generalization performance of ensemble learning model,an ensemble modeling method of online dynamic selection for optimizing the diversity of the base learners was proposed,on the basis of ensuring the accuracy of the ensemble learning model.Online sequential extreme learning machine was used as the base learner,and the base learners were sorted in reverse order according to their classification accuracy on the sliding window.The other performance indexes of the basic learners on the sliding window were used as the feature attributes,and the approximate linear dependence condition was used to select accurate and diverse base learners for ensemble output,which improves the classification accuracy of the ensemble algorithm in dealing with the concept drift data stream.Finally,the rationality and effectiveness of the proposed algorithm were verified by using the synthetic data sets and real-world data sets.
作者 陈双叶 赵荣 符寒光 高建琛 CHEN Shuangye;ZHAO Rong;FU Hanguang;GAO Jianchen(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2021年第11期1211-1218,共8页 Journal of Beijing University of Technology
基金 国家重点研发计划资助项目(2017YFB0306404)。
关键词 概念漂移 集成学习 近似线性依靠 在线极限学习机 准确性 多样性 concept drift ensemble learning approximate linear dependence online sequential extreme learning machine accuracy diversity
  • 相关文献

参考文献4

二级参考文献112

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部