期刊文献+

兴趣点推荐方法研究综述 被引量:2

Point-of-interest Recommendation:A Survey
下载PDF
导出
摘要 兴趣点(Point-Of-Interest,POI)推荐是基于位置的社交网络(Location-Based Social Networks,LBSN)中一项重要的服务,无论对商家还是对客户都有重要的影响,并且兴趣点数据作为时空数据的典型更是得到了广泛关注,因此兴趣点推荐近年来已经成为学术界的热门研究课题。文章分析了兴趣点推荐的影响因素,对传统兴趣点推荐方法进行了总结,分析了最新的基于图嵌入方法以及图神经网络在兴趣点推荐领域中的应用,最后对兴趣点推荐所面临的挑战以及未来的研究趋势加以分析。 Point-of-interest(POI)recommendation is an important service in location-based social networks(LBSN),which has an important impact on both merchants and customers.As a typical example of spatio-temporal data,POI recommendation has been widely concerned,so it has become a hot research topic in academic circles in recent years.This paper analyzes the influencing factors of interest point recommendation,summarizes the traditional methods of interest point recommendation,the latest graph-based embedding methods and the application of graph neural networks in the field of point-of-interest recommendation are analyzed.Finally,it analyzes the challenges faced by points of interest recommendation and future research trends.
作者 邢长征 朱金侠 孟祥福 齐雪月 朱尧 张峰 杨一鸣 XING Chang-zheng;ZHU Jin-xia;MENG Xiang-fu;QI Xue-yue;ZHU Yao;ZHANG Feng;YANG Yi-ming(School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《计算机科学》 CSCD 北大核心 2021年第S02期176-183,共8页 Computer Science
基金 国家重点研发计划项目(2018YFB1402901) 国家自然科学基金项目(61772249) 辽宁省教育厅一般项目(LJ2019QL017)。
关键词 兴趣点推荐 影响因素 图嵌入方法 图神经网络 Point-of-interest recommendation Influencing factors Graph embedding method Graph neural network
  • 相关文献

参考文献7

二级参考文献51

  • 1Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis [J]. Journal of the Association of Information Sience, 1990, 41(6) : 391-407.
  • 2Song Y, Wang H, Wang Z, et al. Short text conceptualization using a probabilistic knowledgebase [C]// Proc of the 22nd Int Joint Conf on Artificial Intelligence (IJCAI). Palo Alto, CA: AAAI, 2011:2330-2336.
  • 3Wang Z, Zhao K, Wang H, et al. Query understanding through knowledge-based conceptualization [C]//Proc of the 24th Int Joint Conf on Artificial Intelligence (IJCAI). Palo Alto, CA: AAAI, 2015:3264-3270.
  • 4Lund K, Burgess C. Producing high-dimensional semantic spaces from lexical co-occurrence[J]. Behavior Research Methods, Instruments,& Computers, 1996, 28(2): 203- 2O8.
  • 5Turney P D, Pantel P. From frequency to meaning: Vector space models of semantics [J]. Journal of Artificial Intelligence Research, 2010, 37(1): 141-188.
  • 6Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model [J]. The Journal of Machine Learning Research, 2003, 3(2): 1137-1155.
  • 7Mikolov T, Karafiat M, Burget L, et al. Recurrent neural network based language model [C] //Proc of the llth Annual Conf of the Int Speech Communication Association. New York: ACM, 2010: 1045-1048.
  • 8Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space [J]. Computing Research Repository, 2013 [2015-12-30]. http://arxiv, org/ pdf/1301. 3781. pdf.
  • 9Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning [C]//Proc of the 25th Int Conf on Machine Learning (ICML). New York: ACM, 2008:160-167.
  • 10Ire Q V, Mikolov T. Distributed representations of sentences and documents [C]//Proc of the 31st Int Conf on Machine Learning(ICML). PaloAlto, CA: AAAI, 2014:1188-1196.

共引文献140

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部