期刊文献+

基于KL-Ball的社区挖掘方法 被引量:1

Community Mining Based on KL-Ball
下载PDF
导出
摘要 针对邻接矩阵的稀疏特性,采用KL散度来计算网络节点间的距离,提出了一种基于KL-Ball的社区挖掘方法。该方法中,一个KL-Ball代表一个社区,它从质心、半径、互信息及密度4个方面来描述社区,其中质心决定了社区在网络中的位置,半径刻画了社区所能覆盖的范围,互信息度量了社区中包含节点的一致性,密度反映了社区包含节点的数量。给定一个半径,期望从复杂网络中寻找具有低信息、高密度的社区,低信息使得社区包含的节点具有较强的一致性,高密度使得一个社区具有较强的凝聚性。为此,定义了一个基于KL-Ball的社区挖掘目标函数,给出它的优化算法,并从理论上证明了该算法的收敛性。依据社区半径的大小及质心的位置,该算法可应用于非重叠社区挖掘以及重叠社区挖掘。实验结果表明,基于KL-Ball的社区挖掘方法可有效地挖掘网络中蕴含的社区结构,包括非重叠的社区及重叠的社区。 This paper presents a new community mining method where each community is viewed as a KL-Ball,and the KL divergence is adopted to measure the distance between nodes in the sparse adjacency matrix.This paper defines the KL-Ball consisting of four aspects:center,radius,mutual information and density.The center determines the location of KL-Ball in the complex network,and the radius determines the region of KL-Ball.The mutual information is used to measure the consistency of objects in a community,and the density is adopted to measure the coherence of a community.Given a radius,we aim to find communities with lower-information and higher-density in the complex network.For this purpose,we define the community mining objective function based on KL-Ball.Then we propose an optimization algorithm to minimize the objective function and theoretically prove the convergence of it.The proposed algorithm adopts a flexible community mining framework,and can be applied to several kinds of community mining tasks based on different locations and regions of the KL-Balls,such as the traditional community mining,high precision community mining and overlapping community detection.The experiment results show that the proposed KL-Ball based method can effectively find the community structure in complex network,including non-overlapping and overlapping communities.
作者 娄铮铮 王冠威 李辉 吴云鹏 LOU Zheng-zheng;WANG Guan-wei;LI Hui;WU Yun-peng(School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《计算机科学》 CSCD 北大核心 2021年第S02期236-243,共8页 Computer Science
基金 国家自然科学基金(62002330)。
关键词 社区挖掘 KL散度 非重叠社区 重叠社区 Community mining KL divergence Non-overlapping community Overlapping community
  • 相关文献

参考文献4

二级参考文献95

  • 1M. Toyoda, Masaru Kitsuregawa. A Web community chart for navigating related communities. The 10th Int'l WWW Conf.,Hong Kong, 2001.
  • 2P. K. Reddy, Masaru Kitsuregawa. Inferring Web communities through relaxed-cocitation and power-law. Kitsuregawa Lab,Annual Report, 2001.
  • 3A. Z. Brodei', R. Kumar, F. Maghoul, et al. Graph structurein the web. Computer Networks, 2000, 33( 1-6): 309--320.
  • 4R. Albert, H. Jeong, A. -L. Barab6si. Diameter of the World-Wide Web. Nature, 1999, 401: 130--131.
  • 5D. M. Pennock, G. W. Flake, S. Lawrence. Winners don't take all: Characterizing the competition for links on the web.[EB/OL] . http://www.pnas.org/cgi/content/full/99/8/5207,2002-04-16.
  • 6M. R. Henzinger, R. Motwani, C. Silverstein. Challenges in web search engines. The 25th Int' 1SIGIR Conf. on Research and Development in Information Retrieval, Tampere, Finland, 2002.
  • 7S. Chakrabarti, B. E. Dom, D. Gibson, et al. Topic distillation and spectral filtering. Artificial Intelligence Review,1999, 13(5-6): 409--435.
  • 8D. Zhang, Y. Dong. An efficient algorithm to rank web resources. Computer Networks, 2000, 33(1-6): 449--455.
  • 9S. Chakrabarti, B. E. Dom, S. R. Kumar, et al. Mining the Web's link structure. IEEE Computer, 1999, 32(8): 60--67.
  • 10J. Dean, M. R. Henzinger. Finding related pages in the world wide web. The 8th Int'l WWW Conf., Toronto, Canada, 1999.389-- 401.

共引文献108

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部